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where relativistic effects prevail. While this has been known for decades, it also has been
acknowledged that inferring physical conditions in the relativistic regime from the behavior
of the X-ray continuum is problematic and not satisfactorily constraining. With the discovery
in the 1990s of iron X-ray lines bearing signatures of relativistic distortion came the hope
that such emission would more firmly constrain models of disk accretion near black holes,
as well as provide observational criteria by which to test general relativity in the strong
field limit. Here, we provide an introduction to this phenomenon. While the presentation is
intended to be primarily tutorial in nature, we aim also to acquaint the reader with trends in
current research. To achieve these ends, we present the basic applications of general relativity
that pertain to X-ray spectroscopic observations of black hole accretion-disk systems,
focusing on the Schwarzschild and Kerr solutions to the Einstein field equations. To this,
we add treatments of the fundamental concepts associated with the theoretical and modeling
aspects of accretion disks, as well as relevant topics from observational and theoretical X-ray
spectroscopy.

PACS Nos.: 32.30.Rj, 32.80.Hd, 95.30.Dr, 95.30.Sf, 95.85.Nv, 97.10.Gz. 97.80.Jp, 98.35.Mp,
98.62.Mw

Received 26 July 2005. Accepted 29 September 2005. Published on the NRC Research Press Web site at
http://cjp.nrc.ca/ on 13 December 2005.

D.A. Liedahl2 and D.F. Torres. Lawrence Livermore National Laboratory, 7000 East Ave, L-473, Livermore,
CA 94550, USA.

1This article is one of a series of invited papers that will be published during the year in celebration of the
World Year of Physics 2005 — WYP2005.
2 Corresponding author (e-mail: liedahl1@llnl.gov).

Can. J. Phys. 83: 1177–1240 (2005) doi: 10.1139/P05-062 © 2005 NRC Canada



1178 Can. J. Phys. Vol. 83, 2005

Résumé : Les recherches actuelles en astrophysique suggèrent que les objets les plus
lumineux en continu dans l’Univers sont la conséquence d’un flot de matière traversant
le disque d’accrétion en tombant dans un trou noir. Les disques d’accrétion émettent en
grande quantité de la radiation É.-M., chaque bande nous renseignant sur des régimes
distincts de conditions physiques et géométriques particulières. Les émissions X sondent
la partie la plus intérieure du disque, là où les effets relativistes sont prédominants. Nous
savons cela depuis des décennies, tout en reconnaissant que déduire les conditions physiques
dans cette partie relativiste à partir du spectre X reste un problème parce qu’il ne permet
pas de cerner complètement la situation. Avec la découverte dans les années 1990 des
distorsions relativistes des lignes X, est arrivé l’espoir que ces effets pourraient mieux asseoir
nos conclusions sur l’état de la matière dans le disque d’accrétion près d’un trou noir et
fourniraient des critères expérimentaux contre lesquels nous pourrions tester les calculs de
relativité générale dans la limite des champs forts. Nous offrons ici une introduction à ce
phénomène. Bien que la présentation se veuille surtout pédagogique, nous visons aussi à
initier le lecteur aux tendances de la recherche de pointe dans le domaine. Pour y arriver,
nous présentons d’abord la base de la relativité générale qui est pertinente pour l’études des
spectres X provenant des disques d’accrétion, insistant sur les solutions de Schwarzschild et
de Kerr pour l’équation d’Einstein. Nous ajoutons ensuite les concepts de base associés aux
aspects théoriques et de modélisation du disque d’accrétion, ainsi que des éléments théoriques
et expérimentaux reliés à la spectroscopie X.

[Traduit par la Rédaction]

1. Introduction

The publication of Einstein’s General Theory of Relativity (GR) in 1915 was the culmination of
several years of effort that began as early as 1907, when Einstein began to address the incompatibility
between the Special Theory of Relativity and Newtonian gravitation. The nature of the inconsistency
is clear. For example, Newton’s formulation of gravitation is embodied in the Poisson equation for the
gravitational potential, ∇2φ = 4πGρ, where the source term ρ is the mass density, and it is implied
that the field responds instantaneously to changes in ρ, thereby violating special relativity. To Einstein,
this inconsistency foreshadowed a complete revision of gravitation theory.

For a relativistic theory of gravity, the characteristic length scale for physical effects near a mass
M , on dimensional grounds, is GM/c2, which is known as the gravitational radius. In assessing the
magnitude of GR effects in the vicinity of a massM , at a distance r from the mass, one compares r with
this characteristic length scale. Therefore, we expect only small perturbations to Newtonian physics
whenever GM/rc2 � 1. This is just the case for the first proposed tests of GR, and in fact, for all
possible terrestrial and solar system experiments. Most notable were the problem of the precession of
the perihelion of Mercury and the prediction of the bending of starlight as it grazed the Sun. In both
cases, GM/rc2 � 1, and the magnitude of the effects are indeed subtle.

The advance of Mercury’s perihelion is 574 arcsec per century, only 43 of which are left unexplained
by Newton’s 1/r2 law after accounting for perturbations of Mercury’s orbit caused by the other planets.
In 1914, using the nearly completed GR theory, Einstein found that the rate of advance of the perihelion
�ω ≈ (3GM/c2rorbit)ωorbit, which works out to 43 arcsec per century. Einstein was thus able to account
for a discrepancy that had been known for 60 years, and was delighted, being moved to exclaim

For a few days, I was beside myself with joyous excitement.

The quantitative confirmation of the deviation of a ray of Sun-grazing starlight brought worldwide
acclaim to Einstein (an authoritative discussion can be found in ref. 1). In 1911, again before the final
version of GR was in hand, Einstein predicted that the deflection should amount to 2GM/R�c2 =
0.87 arcsec, where R� is the radius of the Sun. This result could not have been especially satisfactory
to Einstein, since it can be derived from Newtonian mechanics, if one assumes that light is corpuscular,
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composed of particles with a mass equivalent E/c2. The result is referred to as the “Newton value,”
and is one half of the revised value derived by Einstein in 1915 (1.74 arcsec). In 1919, the result of
a measurement of the deflection that confirmed Einstein’s prediction was announced to the Prussian
Academy, after which Einstein’s reputation soared, both inside and outside academic circles, and the
notions of warped space and time — warped spacetime — found their way into mainstream physics.

The revolutionary implications of GR forced dramatic revisions of the concepts of space and time,
not the least of which was the abandonment of the action-at-a-distance model of gravity. By contrast,
the applications of GR in the early 1900s could be regarded as subtle corrections to Newtonian theory.
However, discoveries of the 1960s — the discovery of compact X-ray binary sources [2], the recognition
of the nature of quasars [3], and the discovery of radio pulsars [4] — provided examples of environments
for which general relativity constituted substantially more than a gentle correction to Newtonian physics.

The succession of rapid-fire astronomical discoveries of the 1960s marks the birth of relativistic
astrophysics. Perhaps the most remarkable idea to present itself during that era was that black holes
could exist in nature. In Sect. 2, a brief history of the black hole concept is presented. Here, we remark
only that, in 1916, only a few months after Einstein published his final version of GR, Schwarzschild
discovered the solution to the field equations corresponding to the exterior of a spherically symmetric
mass distribution. This solution is the starting point for the study of black holes. Prior to the 1960s,
however, references in the scientific literature to what eventually came to be called black holes were
sporadic and met with skepticism.

Taken alone, GR does not prescribe a minimum black hole mass. However, those objects currently
identified as black holes are believed to have formed from the catastrophic collapse of massive stars, and,
combining GR with the equations of stellar structure, a minimum mass of about 3M� is required [5,6].
According to GR, a classical theory, matter undergoing gravitational collapse to form a black hole is
crushed inexorably until it ends up in a point, known as the singularity. The singularity is enshrouded by
a mathematical surface known as the event horizon, within which matter and light are trapped, destined
to merge with the singularity. The event horizon has a radius 2GM/c2 (about 3 km per solar mass),
if the black hole is not spinning. The event horizon can be as small as GM/c2 in the case of a black
hole spinning at its maximum rate. A black hole is a simple object, in the sense that spacetime outside
its event horizon can be described entirely by its mass, spin, and charge. Therefore, black holes belong
to a three-parameter family — absurdly simple compared to, say, main-sequence stars. And yet, black
holes so violate one’s physical intuition that even Einstein doubted that they could exist in nature. In
the words of Novikov [7]:

Of all conceptions of the human mind perhaps the most fantastic is the black hole. Black
holes are neither bodies nor radiation. They are clots of gravity.

Outside the event horizon, the behavior of matter is dictated, in part, by the spacetime geometry.
If radiating matter of sufficient quantity exists near the event horizon of a black hole, such that it
is observable at Earth, then some of the effects of warped spacetime are observable, and we gain
experimental access to physical environments for which GM/rc2 is not negligibly small. This regime
is known as the strong field limit, where relativistic effects are of fundamental importance. Nature has
obliged us, by providing (at least) two classes of black hole systems — black hole X-ray binaries and
active galactic nuclei (AGN) — in which prodigious quantities of matter are flowing “onto” the black
hole, resulting in the release of copious electromagnetic radiation. In fact, detections of X-ray line
radiation from regions where GM/rc2 ≈ 1 have been claimed.

The flow of material referred to above is called accretion, defined as the capture of matter by an
object’s gravitational field, where it is presumed that the fate of the captured material is coalescence
with the gravitating body, or, in the black hole case, passage through the event horizon. The physics of
accretion has been an active area of research for over three decades. For the purposes of this paper, the
importance of accretion is tied primarily to the role it plays in the conversion of gravitational potential
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energy into radiation. Owing to the prevalence of angular momentum in the cosmos, accretion often
involves a disk. Accretion disks provide the means by which to dissipate angular momentum, allowing
accretion, which is accompanied by the release of energy. The extraction of energy is especially efficient
if the inner edge of the accretion disk extends to small radii, so that the ratio M/Rinner is large. This
is the case for accretion onto compact objects — white dwarfs and, especially, neutron stars and black
holes. The luminosities of the accreting compact objects that populate the Milky Way Galaxy range as
high as ∼ 105 L�,3 while AGN can exceed that by seven, eight, even nine orders of magnitude [9].

Accretion disks present a number of theoretical challenges. The complexity of the problem, if one
hopes eventually to work from first principles, is suggested by Shapiro and Teukolsky [10]:

In the general accretion case, one must solve the time-dependent, multi-dimensional, rela-
tivistic, magneto-hydrodynamic equations with coupled radiative transfer!”

Given the context of the earlier parts of this section, the above quote begs the question as to whether or
not the strong field regime of GR can be tested through studies of accreting black holes. Considering
that accretion onto black holes is one of the dominant light-producing mechanisms in the Universe,
developing reliable working models of disk accretion is, from the astrophysics standpoint, likely to be
considered a higher priority than testing GR, although the latter is certainly a long-term goal. Moreover,
it is probably fair to say that, at present, discerning possible inadequacies in strong field GR, a “clean”
theory, using “messy” accretion disk models is problematic. In the meantime, recognizing that GR has
stood up to every test to which it has been subjected, the theory in full is generally taken as being correct,
and incorporated into the array of theoretical tools used to study black hole accretion.

Accretion-powered objects are bright X-ray sources [2, 11]. The observed variability of the X-ray
flux [12–14], rapid compared with variability at longer wavelengths, implies that X-rays are produced
preferentially in the inner regions of the disk.4 The X-ray continuum spectra vary from source to source,
and can vary in time as well, but for our purposes it is adequate to think of accreting black holes as
exhibiting power-law continua that extend up to hard-X-ray energies (∼hundreds of keV) [15,16]. If an
optically thick accretion disk surrounds the compact object, and if the X-ray continuum flux irradiates
the disk, then spectral signatures of the interaction of the X-ray continuum and the disk are expected to
imprint themselves on the overall spectrum [17–19]. This imprinting is known as “reflection”. Among
the expected reflection features are a blend of X-ray lines from iron lying in the 6.4–7.0 keV spectral
range. These lines are produced as the result of 1s photoionization of multielectron iron ions. It was also
shown that, if the iron lines are generated very near a black hole, relativistic effects will skew the line,
i.e., relativistic Doppler effects would broaden the line to several ×10 000 km s−1, and the gravitational
redshift would produce observed emission down to several hundred to a few thousand eV below the
rest energy (see Fig. 1), depending on the radial extent of the disk and its inclination with respect to
the plane of the sky [21]. Precedence for the possibility of observing relativistic effects in emission
lines was set by observations of the elliptical galaxy Arp 102B in the visible band, where the shapes
of Hα and Hβ emission lines were analyzed in the context of a relativistic accretion-disk model [22].
Broad X-ray iron line emission was detected in the Galactic black hole X-ray sources Cyg X-1 [23]
and 4U1543-47 [24], possibly implying relativistic broadening, although the poor spectral resolution
available at that time made definitive conclusions problematic. Alternative mechanisms for producing
broad lines were shown to be unlikely [25]. The breakthrough observation was that of the Seyfert 1
galaxy MCG-6-30-15, using the ASCA observatory, which exhibited evidence for highly broadened and
skewed iron line emission [26, 27].

3The symbol � refers to the standard solar value of the subscripted quantity. Throughout the paper, we refer
to the mass, radius, and bolometric luminosity of the Sun – M� = 1.99 × 1033 g; R� = 6.96 × 1010 cm;
L� = 3.9 × 1033 erg s−1 (1 erg s−1 = 10−7 W) [8].

4The time scale for appreciable variations in the observed flux is associated with the light-crossing time of the
source, so that the linear extent of the source is given by R ∼ ctcross.
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Fig. 1. Broad iron Kα emission from two Seyfert 1 galaxies: MCG-6-30-15 (left panel) [26] and NGC
3516 (right panel) [121] as recorded with the ASCA Solid-State Imaging Spectrometer (crosses) following
subtraction of a continuum model. The line flux is scaled in multiples of 10−4 photons cm−2 s−1 keV−1.
Line profiles consist of a narrow emission component at 6.4 keV, the approximate rest energy of near-
neutral iron ions, and a broad redshifted wing, believed to result from relativistic effects within a few
gravitational radii of a supermassive black hole. Figures reprinted from ref. 20, with permission of the
publisher, The American Institute of Physics.
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The discovery of skewed iron line emission has motivated a great deal of theoretical research, and
has intensified observational searches for more and better X-ray data of black hole systems. By the
current paradigm of black hole accretion disks [28], the study of iron line emission from the inner
orbits of the accretion disk surrounding black holes provides the most direct view of the region within
a few gravitational radii of the central engine. Our intention is to provide a primer covering the three
topics that unite this phenomenon: (1) black holes, (2) accretion theory and modeling, and (3) X-ray
spectroscopy and spectral modeling. Having here presented a quick synopsis, in the following sections
each is elaborated in turn. It is fair to note that the relativistic disk interpretation is not unanimously
accepted. Not surprisingly, with far-reaching consequences at stake, alternative models for producing
the broadened line have been and are being investigated (see, for example, refs. 29 and 30). However,
a comparison of the successes and failures of the various models would take us too far afield, and we
focus here on the relativistic disk interpretation.

We also omit from detailed discussion the subjects of aperiodic and quasi-periodic variability in
the X-ray emission from black hole systems, subjects that are extremely rich from a phenomenological
standpoint, as evidenced by data collected with the Rossi X-ray Timing Explorer (RXTE). In black hole
X-ray binary systems, the observed time scales for variability are of the same order as the dynamical
time scales expected for accretion flows near the black hole. Therefore, the temporal behavior of the
X-ray emission provides another powerful view of the relativistic dynamics associated with the inner
accretion disk. Although studies of the timing properties of black hole systems have, for the most part,
constituted a somewhat “orthogonal” approach relative to spectroscopic analysis, there is a great deal of
potential in analyzing the X-ray behavior of accreting black holes in the spectral and temporal domains
when measured simultaneously. For reviews, see refs. 13, 31, and 32.

We have endeavoured to provide the reader with a sufficient number of references to begin an
exploration of the literature, but we make no claim of unbiased completeness. The collection of papers
cited is a reflection of our own experience with the subject matter. We note that excellent reviews of
this topic have recently appeared [33,34]. We take a more tutorial approach in this paper, and hope that
readers will find our paper to be complementary, although there is some unavoidable overlap.
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The organization of the paper is as follows: in Sect. 2 we briefly sketch the historical development of
the black hole concept, from Michell’s dark star to Schwarzschild’s solution of Einstein’s field equations
to the golden age of theoretical black hole research. A few of the core concepts associated with accretion
power are treated in Sect. 3, including theα-disk model and the concept of accretion efficiency. Properties
of the two size classes of black holes that are convincingly established — stellar-sized and supermassive
— are outlined in Sect. 4. Also in Sect. 4, we comment on the more speculative intermediate-mass black
holes, and the microquasar phenomenon. In our treatment of general relativity, we forego a treatment
of the theory proper, and instead focus on a few of the applications relevant to line spectroscopy of
accreting black holes, including the implications of both the Schwarzschild (Sect. 5) and Kerr (Sect. 6)
solutions. These include the gravitational redshift, the nature of circular orbits, and light motion. Vertical
structure calculations of accretion-disk atmospheres and the basic atomic physics processes that give
rise to iron K spectra are the subjects of Sect. 7. Topics here include X-ray photoionization codes, the
X-ray fluorescence mechanism, the fluorescence yield, resonantAuger destruction, and X-ray reflection.
We conclude in Sect. 8.

2. History of the black hole concept

Given the association of black holes with Einstein’s GR, it might be natural to conclude that the
notion of objects from which light cannot escape was engendered by 20th century physics. However,
allusions to the idea were already around hundreds of years earlier. In 1676, Roemer, noting variations
in the period of Jupiter’s moon Io, discovered that the speed of light is finite. In 1728, Bradley, through
observations of stellar aberration, produced further confirmation and a more accurate value of the speed
of light, 295 000 km s−1. The concept of escape velocity, which, for a spherical massM of radius R, is
vesc = (2GM/R)1/2, was present in Newton’s time. In 1783, the English geologist Michell combined
these previous pieces of information, and realized that it would be theoretically possible for gravity to
be so overwhelmingly strong that nothing — not even light — could escape. Michell’s statements were
made in the context of a corpuscular theory of light, the in-vogue approach at the time:

Suppose the particles of light to be attracted in the same manner as all other bodies …[then]
there should exist in nature bodies from which light could not arrive at us.

Michell went further, and proposed that from the motion of companion stars5

…we might still perhaps infer the existence of the central objects with some degree of
probability.

Michell’s objects were dubbed dark stars. Laplace published similar comments in his 1795 Exposition
du systeme du monde, and added that

…it is therefore possible that the greatest luminous bodies in the Universe are on this
account invisible.

Late 19th Century experiments fueled the rise of quantum mechanics and the wave interpretation of
light, and the ideas of dark stars were soon forgotten.

The mathematical discovery that would lead to the modern concept of the black hole was introduced
in 1916, as the first solution to Einstein’s field equations. At the outbreak of World War I, in August
1914, Schwarzschild volunteered for military service. He served in Belgium as commander of a weather
station, in an artillery unit in France calculating missile trajectories, and in Russia. During this time he
wrote two papers on Einstein’s relativity theory (and one on Planck’s quantum theory, explaining the
splitting of the spectral lines of hydrogen by an electric field — the Stark effect). Einstein was later to
say of Schwarzschild’s work:

5 Michell is credited with the idea of binary stars.
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I had not expected that one could formulate the exact solution of the problem in such a
simple way.

Regrettably, while in Russia, Schwarzschild contracted a fatal disease and went home to die at the
age of 42, never believing in the physical nature of what his solution implied for dark stars. In fact, a
back-of-the-envelope calculation shows that for an object to exist within a sphere of radius 2GM/c2,
its mean density must satisfy ρ̄ > 3c6/32πG3M2, or ρ̄ > 1016 g cm−3 for a stellar-mass object, which
must have seemed absurd at that time.

With the end of the First World War, further astronomical tests of general relativity led to popular and
scientific interest in Einstein’s ideas. Most notable was an expedition led by Eddington, the goal of which
was to obtain a measurement of the bending of starlight by the Sun during a solar eclipse. Meanwhile,
research on stellar structure and evolution thrived during these years. In 1930, Chandrasekhar computed
the first white dwarf models, taking into account special relativistic effects in the degenerate electron
equation of state, based on the Fermi–Dirac statistics introduced in 1926, and on the ideas of Fowler
regarding the equilibrium between electron degeneracy pressure and gravity. Chandrasekhar discovered
that no white dwarf could sustain a mass larger than 1.4M�. It was apparent that if the electron degeneracy
cannot withstand gravity, further collapse is inevitable.

In 1934, Baade and Zwicky predicted that this further collapse would strip the atoms of their
electrons, packing the nuclei together, while forming a neutron star. These stars were expected to be
about 10 km in diameter, but with densities on the order of a billion tons per cubic inch. The neutron
had been discovered by Chadwick only two years earlier. In this same work, Baade and Zwicky coined
the term supernova and introduced its concept. In acknowledgement of one of the most prescient papers
ever written, even the comic strip of the Los Angeles Times would comment on the issue. Zwicky would
later say of this insert:

This, in all modesty, I claim to be one of the most concise predictions ever made in science.
More than thirty years were to pass before the statement was proved to be true in every
respect.

In 1939, Oppenheimer and Volkoff [35], and, a few months later, Oppenheimer and Snyder [36]
realized that this inevitable stellar collapse implies a stellar evolutionary scenario for the formation
of black holes. In the first paper, the first detailed calculations of the structure of neutron stars were
performed, establishing the foundation of the general relativistic theory of stellar structure. The second
paper focused on the collapse of a homogeneous sphere of a pressure-free fluid using general relativity.
Oppenheimer and Snyder’s star was precisely spherical, non-spinning, non-radiating, uniform in density,
and with no internal pressure. It was this set of assumptions, perhaps, that gave rise to skepticism
regarding the applicability of the results to real imploding stars. The most impressive prediction in
the Oppenheimer and Snyder work was the fact that an external observer — one far from the star
— would see the implosion come to a halt at the event horizon, whereas one riding with the falling
material would witness the whole process to the end, finding herself drawn into a point of infinite
density, notwithstanding the meager hopes of surviving the trip until contact with the singularity. They
concluded:

When all thermonuclear sources of energy are exhausted, a sufficiently heavy star will
collapse. Unless [something can somehow] reduce the star’s mass to the order of that of
the sun, this contraction will continue indefinitely.

These discoveries in the field of stellar evolution directed attention to the Schwarzschild model
of the spacetime exterior to a star. But yet again, a new world war would soon divert the efforts of
most scientists towards military and nuclear research. Work on black hole physics recommenced in
the mid-1950s, when Finkelstein discovered an alternative coordinate system for the Schwarzschild
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geometry that helped to clarify the Oppenheimer and Snyder results as being caused by time dilation in
a gravitational field. Wheeler, first an opponent of the black hole concept, began to accept it, and tried
to construct a quantum mechanical view of the inner singularities. Finally, Kerr discovered the spinning
black hole solution to the Einstein field equations in 1963 [37].

The term “black hole” was introduced in 1967 by Wheeler. In a 2003 interview with Davies, he
explains his choice:

The occasion was a meeting in the fall of 1967 at the Institute of Space Studies in NewYork
to consider this marvelous work of Jocelyn Bell and Anthony Hewish on the pulsars. What
could be the cause of these absolutely regular pulses from some object out in space, and
one obvious possibility was vibration of a white dwarf star, another was the rotation of a
neutron star. But then I thought that to keep one’s mind open, to look at all the possibilities
one ought really to look at the gravitationally completely collapsed object. Well, the very
words sounded so foggy, so ethereal, so far from touchability that nobody resonated to that
as a possibility to be investigated. So in desperation I adopted the words Black Hole. Well,
here at least was a name.

The golden age of theoretical research in black hole physics started in 1964, and was to last for at
least a decade. In this decade, computer codes used in hydrogen bomb research were adapted to study
stellar collapse, topological methods and thermodynamical ideas were introduced into the study of black
holes, the “no hair theorem” was demonstrated (a black hole has no characteristics indicative of the star
from which it came, and that only three parameters — mass, angular momentum, and charge — are
needed to describe it), and the cosmic censorship conjecture was stated (there are no naked singularities,
but rather, they are dressed with horizons), among many other results. After 1975, whereas important
theoretical progress was still being made, the field slowly started to be dominated by an astronomical
search for black holes in the Universe, at all scales. By that time, there were ample astrophysical reasons
to expect objects described by solutions to Einstein’s field equations to become part of the ontology of
the Universe.

3. Accretion power

Accretion is defined as the capture of matter by an object’s gravitational field, where it is presumed
that the fate of the captured material is coalescence with the gravitating body, the results of which are
an increase in the object’s mass, as well as the conversion of gravitational potential energy into other
forms. The introduction of accretion flows into astrophysics is often traced to the 1939 paper by Hoyle
and Lyttleton [38]. Interestingly, its title is “The Effect of Interstellar Matter on Climatic Variations,”
which examined the possibility that variable accretion of interstellar clouds by the Sun could be linked
to the Ice Epochs of Earth’s deep geological past. The notion of accreting black holes lay more than
two decades in the future. The astronomical discoveries of the 1960s provided impetus for the rapid
development of accretion theory, currently an active area of astrophysical research. We provide here
a brief sketch of the theory as it pertains to our subject matter. A collection of seminal papers on the
topic can be found in ref. 39. For a comprehensive textbook introduction to the physics of accretion,
see ref. 40. An up-to-date review article, with a pedagogical approach, can be found in ref. 41.

3.1. Basic concepts

To impart the fundamentals of accretion physics, we start with the Newtonian view of gravitation and
a neutron star onto which matter falls. A test mass m that free falls from rest at “infinity” and comes to
rest on the surface of a star of massM and radius R, loses an energyGMm/R, which, for the purposes
of this discussion, we assume to be converted into radiation. Therefore, given a more-or-less steady
infall of matter, the energy generation rate — the accretion luminosity — is Lacc = GMṀacc/R, where
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Ṁacc is the mass accretion rate, the dot denoting differentiation with respect to time. It is sometimes
convenient to express Lacc in a special relativistic context, treating the energy release per unit time as
being equivalent to a conversion of rest mass energy into radiation per unit time. Thus,Lacc = ηṀaccc

2,
where η is the dimensionless accretion efficiency. For the case of a spherical star, as discussed here,
η = GM/Rc2. The appearance of relativistic correctness implied by the adornment of these last two
expressions with factors of c2 is entirely artificial, since the derivation of the accretion luminosity was
obtained with purely Newtonian physics. Later, however, we will see that expressing Lacc in terms of
η follows quite naturally in the general relativistic context, and we continue to use η to relate Lacc to
Ṁacc.

Matter in an accretion flow is subject not just to gravitational forces, but to radiation forces, as well.
The radiation produced near the surface of the accreting object exerts a pressure on the accretion flow.
For radiation emerging from a gravitating source, the force on a particle at distance r , in terms of an
interaction cross section σ(ν), is

Frad =
∫ ∞

0
dν

Lν

4πr2hν

hν

c
σ(ν) (1)

where Lν/4πr2hν is the areal rate at which photons in the frequency range [ν, ν+ dν] arrive at r , and
hν/c is the photon momentum. Thomson scattering sets the baseline for this integral, so that, ignoring
relativistic corrections to the Thomson cross section σT, the net force, including gravity, is

F = σTL

4πcr2 − GMmp

r2 (2)

assuming for simplicity a fully ionized hydrogen plasma (mp is the proton mass). For accretion to
proceed, we must have F < 0, which imposes an upper limit to the accretion luminosity, known as the
Eddington luminosity, which is given by

LE = 4πGmpcM

σT
= 1.3 × 1038 M

M�
erg s−1 (3)

By the same reasoning, there is an upper limit to the mass accretion rate. From the relation defining the
proportionality between L and Ṁ , L = ηṀc2, we define the Eddington accretion rate

ṀE = 4πGmpM

ηcσT
= 1.4 × 1018

( η
0.1

)−1 M

M�
g s−1 (4)

If a black hole accretes matter at the Eddington rate, then its growth rate dMBH/dt ∝ MBH, and the
mass grows exponentially with time, with an e-folding time τgrowth = ηcσT/4πGmp ∼ 5 × 107 years,
if η = 0.1.

Perhaps the simplest model of mass transfer in an X-ray binary system, to the extent that it is
straightforward to obtain order-of-magnitude estimates, is that pertaining to a high-mass X-ray binary
(HMXB). A more detailed description can be found in ref. 42. In HMXBs, a high-mass (O or B) star,
radiates a bright UV continuum that transfers momentum to the stellar atmosphere through absorption
in resonance lines, thus driving a mass outflow — a stellar wind. In close proximity to the OB star is a
neutron star, which captures part of the wind. In order to obtain numerical values of various quantities,
we assume here that the mass of the neutron star is 1.4M�, and that its radius is 106 cm, so that η = 0.21.
A simple estimate of the rate at which mass is captured by the neutron star can be found by finding
the distance racc at which the wind kinetic energy per unit mass, determined by the wind velocity vw,
is equal to the gravitational potential associated with the neutron star. This gives the accretion radius,
racc = 2GM/v2

w. Since the neutron star accretes at the rate Ṁacc = πr2
accρwvw, we can determine the

accretion luminosity once we know the wind mass density ρw at the position of the neutron star. This
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can be estimated by a mass continuity equation, assuming that the wind is spherically symmetric with
respect to the OB star: Ṁw = 4πa2ρwvw, where Ṁw is the total mass loss rate of the star, and a is the
separation between the centers of mass of the components of the binary. Putting all this together, we
find

Ṁacc ∼
(
GM

av2
w

)2

Ṁw = 2 × 1016 a−2
12 (vw)

−4
8 (Ṁw)−6 g s−1 (5)

To obtain the numerical estimate, we have written the various quantities in terms of multiples of typical
values for those quantitities: a12 is the binary separation expressed as a/(1012 cm); (vw)8 is the wind
velocity expressed as v/(108 cm s−1); (Ṁw)−6 is the mass loss rate expressed as Ṁw/(10−6M� yr−1).

In obtaining an estimate of the mass accretion rate in a typical HMXB, there is no reason we could
not have substituted a black hole for the neutron star. But let us now proceed to determine the resulting
luminosity and radiation temperature. Using η = 0.21, derived above for the neutron star case, the rate
of mass accretion found in (5) results in a luminosity Lacc ∼ 1036 s−1, or approximately 103 L�. An
order-of-magnitude estimate (actually a lower bound) of the radiation temperature associated with the
accretion luminosity can be obtained by assuming that the radiant energy takes the form of a blackbody.
If the energy is released uniformly over a spherical surface of radius R, which we assume to coincide
with the neutron star surface, thenLacc = 4πR2σT 4

bb, where σ is the Stefan–Boltzmann constant. Thus,
we find Tbb = (GMṀacc/4πσR3)1/4, or, again in terms of typical system parameters

Tbb = 3.2 × 107 (vw)
−1
8 a

−1/2
12 (Ṁw)

1/4
−6 K (6)

which implies that the emission peaks in the X-ray band.
The simple model described above is consistent with observations of typical HMXBs. Is this model,

on the other hand, relevant to black hole systems? For example, is it valid to simply evaluate η for a
black hole by inserting, say, R = 2GM/c2 into η = GM/Rc2, i.e., ηBH = 0.5? Clearly, the answer
must be “no,” since the calculation of η for a neutron star is based upon the assumption that the matter
comes to rest on a material surface. In the cold fluid approximation, as used above, we might expect all
of the energy release in black hole accretion to occur below the event horizon, leaving η = 0. In a more
realistic treatment, one assumes a finite gas temperature, and includes thermal energy balance in the
calculations. Some fraction of the accretion energy is radiated away before crossing the event horizon.
Such a scenario applies to accretion of the interstellar medium by an isolated black hole. Detailed
calculations [43] show, however, that for an ambient ISM density and temperature of 1 cm−3 and 104 K,
respectively, the efficiency η ∼ 10−10, and the luminosity is expected to be only ∼ 1021 erg s−1 per
solar mass of the accretor, far too dim to be observed (cf., refs. 44 and 45). The inefficiency of spherical
accretion by a black hole is borne out by the realization that, in spite of the large number of black holes
postulated to populate the Milky Way Galaxy, only the merest fraction (perhaps 1 in 107) has been
identified.6

In acknowledging that radial accretion onto a black hole is unlikely to produce a light source
sufficiently bright that it is observable at Earth, we turn instead to accretion via a disk. We will see that
disk accretion can be an extraordinarily efficient means by which to extract energy from matter near a
black hole.

3.2. Accretion disks
Angular momentum favors the formation of disks around accreting masses. The surfaces of constant

gravitational potential between two stars in a binary system are such that a saddle point forms on the line

6 By “identified,” we mean “inferred.” The designation black hole candidate is applied when alternative explanations
do not suffice.
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of centers (the imaginary line connecting the centers of mass) between the two stars. The equipotential
surface that intersects this saddle point is called the Roche lobe. If matter from one star reaches this
saddle point, known as the inner Lagrangian point, or L1, then it can accrete onto the other star. Since
there is relative motion between the stars, however, the overflowing matter cannot strike the accreting
star directly, but rather goes into an orbit [46] dictated by its specific angular momentum. If sufficiently
large quantities of matter spill through L1, however, these orbits cannot persist. Instead, collisions
result in loss of energy and circularization of the orbits. Viscosity spreads the disk, transporting angular
momentum outward and matter inward. This model describes the mass transfer mechanism in X-ray
binaries, a pair of stars in close orbit, one of which is a gravitationally collapsed object — a neutron star
or a black hole. The mass-donor star is known as the companion. The X-ray binary phase of a Roche
lobe overflow system is initiated when the companion expands to fill its Roche lobe, a consequence
of normal stellar evolution [47]. The accretion of matter, if the overflow rate is sufficiently large, can
power a highly luminous X-ray source. In this case, however, in contrast with the HMXB case, the disk
itself radiates much of the luminosity, irrespective of the presence of a material surface at the gravitating
center.

Disk accretion by Roche lobe overflow was first invoked to explain cataclysmic variable systems [48],
in which a normal star transfers mass to a white dwarf (Rwd ∼ 109 cm) in a close binary system. The
fundamental theoretical aspects of accretion disks in X-ray binaries were worked out by Pringle and
Rees [49] and by Shakura and Sunyaev [50]. The latter authors derived an analytic model of disk flow,
where the viscously dissipated energy is assumed to be locally radiated as black body emission, with
the temperature given by

Tbb(r) =
[

3GMṀ

8πσr3

(
1 −

√
R∗
r

)]1/4

(7)

whereR∗ is the radius of the accretor, or, in the black hole case,R∗ is the innermost stable circular orbit
of disk material (see Sect. 6). Equation (7) is similar to the expression derived for HMXBs, showing
that, for similar parameters, X-ray-emitting temperatures are expected. The energy dissipated per unit
area is

Q(r) = 3GMṀ

8πr3

(
1 −

√
R∗
r

)
(8)

from which (7) follows. The disk luminosityLdisk can be found by integratingQ(r) over both disk faces,
from R∗ to some outer radius Router. A good approximation for Ldisk is found by letting Router → ∞,
yielding the result Ldisk = GMṀ/2R∗ [40]. If the accretor has a solid surface, the remainder of the
energy is dissipated as it comes to rest on the surface. If the accretor is a black hole, then the remainder
simply disappears behind the event horizon. In this latter case, if the black hole does not spin, the inner
disk radius is taken to be 6GM/c2 (see Sect. 5), which gives Lacc = Ṁc2/12, i.e., η ≈ 0.083. For a
black hole spinning at its theoretical maximum rate, we set R∗ = GM/c2, which gives η = 0.5. In
Sects. 5 and 6, we derive relativistically correct values for the accretion efficiencies of nonspinning and
spinning black holes, respectively.

In terms of accretion disk dynamics, the essential breakthrough introduced by Shakura and Sunyaev
[50] was the α-prescription, a parameterization of the vertically-averaged stress that assumes it can be
written as αP , where P is the vertically-averaged total pressure in the gas (gas pressure plus radiation
pressure), and where α is a constant. The α-prescription permits the solution of the coupled set of
eight equations that determine the disk structure. Although the α-prescription sidesteps a good bit of
complex physics, it turns out that many results are fairly insensitive to the value of α. For example,
the disk central temperature, i.e., T (r, z = 0), is proportional to α−1/5, whereas, (7) and (8) show
that some results of interest have no dependence at all on α. For this reason, the α-disk has seen wide
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use. Indeed, the optically thick α-disk model has been accepted with only a few modifications since
its inception in 1973 [51–53]. Among these modifications are the development of various branches
of self-consistent accretion flow solutions such as advection-dominated accretion flows [54, 55] that
successfully describe the spectral behavior of black hole XRBs [56, 57], advection-dominated inflow
and (or) outflow systems [58], and convection-dominated accretion flows [59]. Comparisons of the
α-disk model with observations of X-ray binaries and AGN are presented in ref. 40 and refs. 60 and 61,
respectively. Modern accretion flow models are discussed in ref. 62.

In spite of the successes and ease of use of the α-disk model, a physical understanding of α (or
something like it) has been an important goal for accretion disk modellers, since it determines the
essential mechanism that drives the transport of angular momentum. The viscous mechanism in accretion
disks allows accretion to occur by transporting angular momentum outward, matter inwards, and by
dissipating gravitational energy into heat inside the disk. The viscosity mechanism has been identified
in theory as a magneto-rotational instability arising from the entanglement of magnetic fields caused
by differential rotation of gas in Keplerian orbits [63]. In magnetohydrodynamic (MHD) models, this
mechanism provides the energy dissipation and angular momentum transfer needed to naturally produce
mass accretion with self-sustained magnetic fields B that are much smaller than the equipartition level
(B2/8π � ρv2), where ρ is the gas mass density and v is the thermal velocity. Numerical MHD
models [64] show that α is not constant, but that it ranges from ∼10−3 to 10−1.

While the X-ray continuum in accreting neutron star systems is interpreted, in part, as thermal
emission from the disk, the presence of (apparently) nonthermal continuum radiation in these sources,
andAGN, as well, is not naturally explained with theα-disk formalism. In fact, the high-energy emission
is especially problematic in AGN, if we consider (7). Anticipating a result that is derived in Sect. 5, set
R∗ = 6GM/c2, which corresponds to the inner-disk edge in a nonspinning black hole, and express the
mass accretion rate as a fraction fE of the Eddington accretion rate, Ṁ = fEṀE. Finally, if we express
r as a multiple of the gravitational radius GM/c2, so that x = c2r/GM , then (7) can be written as

Tbb(x) =
[

3mpc
5fE

2ησσTGM

(1 − √
6/x)

x3

]1/4

(9)

The key result to take away from this expression is the scaling Tbb(x) ∝ M−1/4. Thus, if we accept
the α-disk model for stellar-sized accreting black holes (MBH ∼ 10M�), we are faced with a glaring
inconsistency if we also wish to apply it to AGN (MBH ∼ 107M�); all other things being equal,
T

agn
bb /T xrb

bb = (Mxrb
BH/M

agn
BH )

1/4, which means that a 107 K black body for an X-ray binary is scaled
down to about 3 × 105 K for an AGN disk. The AGN emission is thus expected to peak in the UV band,
with very little luminosity appearing in the hard-X-ray region. While the UV peak, the “big blue bump,”
is a well-known component of AGN spectra [65, 66], the α-disk model says nothing about the X-ray
flux that characterizes AGN [67], and refinement is required to match disk models to observations.
For example, a more realistic accounting of radiation transport effects in the disk atmosphere partially
ameliorates this problem [68–70].

The favored explanation of the X-ray luminosity of accreting black holes posits that the black-
body component originates in a cold, optically thick accretion disk, whereas the hard-X-ray power-law
component is produced in an optically thin hot corona by thermal Comptonization of disk photons
[71, 72]. Comptonization refers to the deformation of a radiation field as it interacts through Compton
scattering with an electron distribution, where a self-consistent solution determines both the spectral
shape and the electron temperature [73–75]. Constructing theoretical models of continuum production
is complicated by the need to include e+–e− pair production in a manner that is self-consistent with the
radiation field [76–79].

In disk accreting systems where a hard-X-ray source is present, the disk is exposed to this radiation
and will be heated by it. In fact, radiative heating can exceed internal viscous heating in some regions of
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the disk. The temperature structure of the disk can thus be controlled by the X-ray field, photoionizing
the gas, suppressing convection, and increasing the scale height of the disk [80]. Photoionization in the
disk is balanced by radiative and dielectronic recombination [81], and possibly three-body recombi-
nation [82] and charge transfer recombination [83]. These recombination processes produce discrete
line emission, which constitute spectral components distinct from the fluorescence component of the
spectrum, potentially providing corollary information relating to the disk structure. A quantity that is
commonly used to describe emission lines that are superimposed on a continuum is the equivalent
width. Since we make several references to the equivalent width in later sections, we define it here for
convenience. The experimentally measured line equivalent width is defined by

Wε =
∫ ∞

0
dε

(Fε)line

(Fε)cont
(10)

The equivalent width is usually quoted in units of eV or keV. Theoretical predictions ofWε follow from
calculations of accretion disk models, which can then be compared with observations. For example,
early model calculations of the expected iron Kα equivalent width, based on the response of an X-ray
irradiated slab, showed that 90–150 eV was attainable [84].

The production of line emissions, regardless of the formation mechanism, and the transfer of these
lines through the over-lying atmosphere requires, in principle, a detailed calculation of the opacity
distribution along their lines of flight. The spatial distribution of the line emissivity, as well as a proper
accounting of the probability of escape must, therefore, account for the vertical structure of the disk.
This includes, in the limit that the vertical structure is in steady-state, the density, temperature, and
charge state distribution. Thus, each annulus of the disk can be thought of as a stellar atmosphere, where
the equations of energy flow must be solved self-consistently with the ionization equations, possibly
constrained by hydrostatic equilibrium. The explicit vertical structure of the disk, however, does not
follow directly from the α-disk model. For example, the surface density — the line integral of the density
in the vertical direction — appears as one of the variables in the disk equations. We return to the subject
of the vertical structure of accretion disks as it bears on X-ray fluorescence in Sect. 7.

4. Astrophysical black holes

In this section, we present a brief survey of black holes from an astronomical point of view, touching
on the gross characteristics of black holes in X-ray binaries and AGN.

4.1. Black hole X-ray binaries

Currently about 250 X-ray binaries are known in our galaxy [85, 86], possibly representing an
underlying population of more than 1000 objects. X-ray binaries can be separated into two populations:
the low-mass X-ray binaries (LMXBs), where “low-mass” refers to the companion star to the compact
object, an older population, concentrated near the Galactic bulge; and the HMXBs (see Sect. 3.1),
younger systems, concentrated in the spiral arms. Mass transfer from the companion to the compact
object is found to typically differ for these two classes as well. In general, LMXBs transfer mass to their
companions through Roche lobe overflow (Fig. 2). Mass transfer in HMXBs is generally mediated by
stellar winds.

A subset of X-ray binaries, twenty or so, are identified as black holes paired with a star that serves
as a mass donor for accretion [56,87]. The most famous example of this class is Cygnus X-1, identified
in 1972 as a black hole candidate [88]. A more common subclass of X-ray binaries are those for which
the compact object is a neutron star, rather than a black hole. When the compact object in an X-ray
binary system is shown to be more massive than about 3M�, the compact object is a good black hole
candidate. For a small group of X-ray binaries, the mass measurement has been performed with high
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Fig. 2. Current basic understanding of the physical components and sites of emission in an X-ray binary
system. In this example, the companion loses mass to the compact object through Roche lobe overflow. The
accreting matter forms a disk, which can be thought of as a series of annular rings in quasi-Keplerian orbits,
whose radii decrease under the action of stresses between neighboring annuli. Radiant energy is released,
giving rise to X-ray emission at small radii. Hard X-ray emission impinges on the optically thick disk,
which “reflects” a fraction of the incident flux, with spectral imprinting in the form of lines, absorption,
and deformed continuum. A fraction of the accretion energy is redirected into kinetic energy, giving rise
to the jets. A hot corona sandwiches the disk at small radii, which can affect the reflection spectrum
through Compton scattering. Figure reprinted from ref. 125, with permission of the publisher, Springer, The
Netherlands.
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precision. This group of X-ray sources is usually referred to as dynamically confirmed black holes.7 A
continually updated list of such objects can be found, thanks to Orosz8 (see ref. 32 for a more detailed

7The relevant experimentally inferred quantity is the mass function, defined by f (M) ≡ PorbK
3
2/2πG

=M1 sin3 i/(1 + q)2 where Porb is the orbital period and K2 is the semi-amplitude of the velocity curve of the
secondary,M1 is the black hole mass, i is the orbital inclination angle, and q ≡ M2/M1, whereM2 is the mass of
the secondary, is the mass ratio. The equation for f (M) implies that the value of the mass function is the absolute
minimum mass of the compact primary. A secure value of f (M) may be sufficient to show that the mass of the
compact X-ray source is at least 3M�.

8 http://mintaka.sdsu.edu/faculty/orosz/web/
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discussion). Among the dynamically confirmed black hole X-ray binaries, there are several recurrent
X-ray novae, all of them LMXBs, and only three persistent sources, Cyg X-1, LMC X-1, and LMC X-3,
which are HMXBs. These special binaries span a large range in the parameter space of basic properties;
for example, XTE J1118 + 480 has Porb = 0.17 days and a binary separation of ≈ 2.8R�, whereas
GRS 1915 + 105 has Porb = 33.5 days and a binary separation ≈ 95R�.

Clearly, if a less strict standard of evidence is accepted, many more black hole candidates can be
identified (see, for example, ref. 32 for a recent discussion). Still, given the small number of black
hole candidates, it may be surprising that, from stellar evolutionary considerations, together with the
incidence of the X-ray binaries that are believed to contain black holes, it is thought that the Milky Way
Galaxy contains about ∼300 million stellar-mass black holes [89–92]. This number implies, assuming
∼10M� per black hole [32], that about 4% of the total baryonic mass (i.e., stars plus gas) of the Galaxy
is in the form of black holes.

The X-ray spectra of X-ray binaries are dominated by continuum radiation. The X-ray luminosities
of persistent XRBs are intrinsically variable, and range anywhere from (typically) Lx ∼ 1036 erg s−1

to as high as the Eddington luminosity of few × 1038 erg s−1. In black hole X-ray novae, the range in
X-ray luminosities is more dynamic, with quiescent luminosities as low as Lx ∼ 1030 erg s−1 [93].
Based upon spectral observations in the soft-X-ray band (say, 1–10 keV), two main categories of
emission states have been distinguished, depending mostly on the slope of the power-law (FE ∝ E−α)
describing the continuum emission of the system. Here, the differential photon count rate is given in
units of photons cm−2 s−1 keV−1. The so-called low state (relatively low photon count rate) features
nonthermal X-ray flux, typically with slopes near 1.6–1.7. Because of the hardness (i.e., relatively high
ratio of hard-X-ray flux to soft-X-ray flux) of such indices, this state is also referred to as the low/hard
state. The high state, by contrast, is characterized by intense quasi-thermal flux. In this state, most of the
radiated energy is concentrated in a black-body component, while the power-law contribution becomes
softer, with power-law indices typically larger than 2. The usual interpretation is that the black body
component originates in a cold, optically thick accretion disk, whereas the power-law component is
produced in an optically thin hot corona by thermal Comptonization of disk photons [72, 94–96].

The first broad Fe Kα line observed was reported in the spectrum of Cyg X-1, based upon EXOSAT
data [23]. Recently, the Chandra X-ray observatory was used to observe Cyg X-1 with the High Energy
Transmission Grating Spectrometer in an intermediate X-ray state [97]. A narrow Fe line was detected
at E = 6.415 ± 0.007 keV with an equivalent width (see (10)) of Wε = 16+3

−2 eV, along with a broad

line at E = 5.82 ± 0.07 keV withWε = 140+70
−40 eV. A smeared photoelectric edge was also detected at

7.3 ± 0.2 keV. These results are interpreted in terms of an accretion disk with irradiation of the inner
disk producing the broad Fe Kα emission line and edge, and irradiation of the outer disk producing the
narrow line. The broad line is thought to be shaped by Doppler and gravitational effects and, to a lesser
extent, by Compton reflection (see Sect. 7).

Early studies of relativistically smeared Fe Kα lines from X-ray binaries relied on proportional
counter detectors with relatively poor spectral resolution (for example, the Ginga’s LAC and the RXTE’s
PCA have an energy resolution of ≈1.2 keV at Fe Kα). The response matrices of the detectors are
uncertain at the 1–2% level, while the Fe line profile is typically only 1–5% above the X-ray continuum
[32]. Therefore, interpretations of results from these instruments must be approached with caution.
BeppoSAX, with a resolution of ≈0.6 keV at 6.4 keV, has also been used to observe several black hole
candidates. The observed iron emission generally appear to be rather symmetric, and may be more a
product of Compton scattering than relativistic broadening. However, in the cases of GRS 1915+105 [98]
and V4641 Sgr [99], the iron lines are skewed, possibly implying relativistic smearing. In addition, an
observation using the XMM EPIC–MOS1 detector led to the report of broad, skewed Fe Kα emission
in XTE J1650–500, perhaps suggesting the presence of a rapidly spinning black hole [100].
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4.2. Active galactic nuclei

Approximately one in a hundred galaxies shows evidence for energy output that appears to be
unrelated to normal stellar processes — rapid bulk motions; a bright, nonstellar radiation continuum;
rapid aperiodic variability; and high-luminosity emission lines originating near the galactic nucleus.
Members of this subset of galaxies are known as active galaxies, and the nuclei are referred to as
AGN [101].

The classification scheme for active galaxies is somewhat daunting. We list here the various classes as
they have been designated in the literature [102]: (1) radio galaxies, (2) radio quasars, (3) BL Lac objects,
(4) optically violent variables, (5) radio quiet quasars, (6) Seyfert 1 galaxies, (7) Seyfert 2 galaxies,
(8) low-ionization nuclear emission-line regions (LINERs), (9) nuclear H II regions, (10) starburst
galaxies, and (11) strong IRAS galaxies. Not all among this group are active by virtue of black hole
accretion. For example, starburst galaxies are sites of anomalously large star formation rates, probably
the result of a gravitational encounter with another galaxy, leading to an enhanced IR luminosity. Here,
we do not delve into the phenomenology that gives rise to this complex taxonomy. In the following, we
reserve the term AGN for active galaxies believed to harbor a supermassive black hole.

Within the unification scheme [103], the underlying model for all classes of AGN is intrinsically
similar. At the very center of the galaxy sits a supermassive black hole (∼ 106–1010M�), which accretes
galactic matter through an accretion disk. Broad emission lines are produced in clouds orbiting above the
disc at high velocity (the Broad Line Region [104]), and this central region is surrounded by an extended,
dusty, molecular torus. A hot electron corona sandwiches the inner regions of the disk, probably playing
a dominant role in generating continuum X-ray emission. Two-sided jets of relativistic particles emanate
perpendicular to the plane of the accretion disc, the generation of which is still not fully understood.

As pointed out in ref. 105, X-ray surveys are an excellent means by which to locate AGN. Surveys
using the Chandra and XMM-Newton observatories find a remarkable ∼103 X-ray sources per square
degree, the vast majority of which are undoubtedly AGN [106,107]. To date, however, the most secure
detections of supermassive black holes (accompanied by a “rule out” of alternative models, such as the
existence of dense clusters of stars or exotic particles) come from stellar proper motion in the Galactic
center and the H2O megamaser of the nearby Seyfert 2 galaxy NGC 4258 [108] (see ref. 109 and
references therein for further discussion). Optical stellar and gas dynamical studies, generally using
the Hubble Space Telescope, have revealed a large concentration of nuclear mass in several tens of
candidates, believed to be black holes. It is true, however, that these methods currently lack sufficient
angular resolution to probe the spacetime at distances on the scale of the black hole horizon (see, for
example, ref. 110).

It is worth noting that nuclear activity is not a prerequisite for the presence of a black hole. In fact,
most of the galaxies probed for supermassive black holes are not really active, but dormant quasars,
relatively close to Earth, and for which the Keplerian signatures could be more easily discovered because
of the higher spatial resolution [111]. The most famous example is provided by our own Galaxy [112].
After charting the kinematics of stars swirling around the central regions of the Milky Way [113–115],
it was found that the total mass of the region enclosed within a radius of 2 × 1015 cm is approximately
3.7×106M�, far more compact than what is possible for a stable distribution of individual objects; total
gravitational collapse is required, according to GR. Indeed, the only remaining alternative candidate,
other than a black hole, to describe the behavior of the innermost stellar orbits in the center of the Milky
Way Galaxy comes from particle physics, and is known as a boson star [116]. Mass estimates for central
supermassive black holes in about twenty nearby galaxies are also available (see the review in ref. 117).
Therefore, if we assume that the Milky Way Galaxy is not unique in this respect, it is possible that a
large fraction of galaxies, active or not, harbor supermassive black holes near their dynamical centers.

Currently, the Seyfert 1 galaxies MCG-6-30-15 [118, 119], Mrk 766 [120], and NGC 3516 [121]
provide the most robust detections of the relativistically broadened iron Kα line. In addition to the
preceding papers, a concise set of case studies of these three objects is provided in ref. 122.
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4.3. Microquasars and jets
Some X-ray binaries are sources of jets, high-velocity streams of oppositely directed particles

originating near the compact object. These sources are called microquasars [123, 124], exploiting an
analogy discussed in more detail below. Figure 2, from ref. 125, is a sketch of an X-ray binary, presenting
the major physical components and sites of emission in such systems. The basic underlying idea behind
the analogy between quasars and microquasars is that the physics in all black hole systems is essentially
governed by scaling laws, whose order parameter is the black hole mass. For instance, the scales of
length and time of black hole-related phenomena are proportional to the mass of the black hole. For a
given critical accretion rate, the bolometric luminosity and length of relativistic jets are also proportional
to the mass of the black hole. For a black hole of mass M , the density and mean temperature in the
accretion flow scale withM−1 andM−1/4, respectively. The maximum magnetic field at a given radius
in a radiation-dominated accretion disk scales withM−1/2, which implies that in the vicinity of stellar-
mass black holes the magnetic fields may be 104 times stronger than that found near supermassive black
holes [126].

One of the most impressive phenomena occurring in both quasars and microquasars is the ejection
of blobs of plasma at apparently superluminal speed [127]. Very Long Baseline Interferometry at radio
wavelengths allows position measurements down to milli-arcseconds, thereby permitting detections of
small changes in position in the sky. The apparent velocity is obtained by multiplying the observed proper
motion by the distance to the source. Such superluminal sources were discovered as radio-galaxies and
quasars, where the central black hole is supposed to have millions of solar masses. It was found that
this very same phenomenon could also occur in Galactic sources, after the report on GRS 1915 + 105
by Mirabel and Rodriguez [124].

4.4. Intermediate-mass black holes
Although consensus has not yet been reached, there are two types of data suggesting the existence

of intermediate-mass black holes, with masses between ∼20M� and several thousandM� [131]. First,
there are numerous X-ray point sources, dubbed ultraluminous X-ray sources, that are not associated
with AGN, and that have fluxes far beyond the Eddington limit of a stellar size black hole system.
Second, several globular clusters show clear evidence for an excess of dark mass in their cores, which
appears to be a single object. The number of such intermediate objects, as well as their actual existence,
is yet under debate, and strongly depends on the mechanism that forms them. For both intermediate
and supermassive black holes, the formation processes are not as well understood as they are for their
stellar counterparts.

5. Black hole accretion in the Schwarzschild metric

In this section, we present in some detail a few of the results of general relativity that pertain to
black hole accretion. As mentioned earlier, there are only three vacuum solutions for black holes. The
simplest — the Schwarzschild metric — describes the geometry of spacetime outside the event horizon
of a black hole with zero charge and angular momentum; mass alone describes the geometry. A clear
and concise derivation of the Schwarzschild solution can be found in, for example, ref. 132. Before
proceeding to the Schwarzschild solution, we introduce the unit conventions that have been adopted for
dealing economically with calculations involving relativity.

5.1. Geometrized units
In the domain of special relativity, space and time are linked by the invariant spacetime interval.

By convention, we can rewrite the familiar expression for the proper time interval in flat spacetime
dτ 2 = c2 dt2 − dx2 as dτ 2 = dt2 − dx2 by expressing time in centimeters; 1 cm of time is, in
conventional units, the time required for light to travel 1 cm, or tconv = tcm/(3 × 1010 cm s−1).
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In general relativity, the dimension of length is given to other quantities as well. For example, as
mentioned in Sect. 1, the characteristic length scale in black hole physics is the gravitational radius9

Rg = GM/c2. Thus, one often encounters dimensionless terms of the form r/(GM/c2). In adopting
geometrized units, we make the transformation

r

GM/c2 → r

M
(11)

whereM carries the unit cm, so that r/M is dimensionless. Therefore, to convert mass expressed in cm
to mass expressed in grams, use

M(g) = c2

G
M(cm) or M(g) = 1.347 × 1028M(cm) (12)

For example, the mass of the black hole near the center of the Milky Way Galaxy (M ≈ 3.7 × 106 M�
or 7.4 × 1039 g in conventional units) is 5.5 × 1011 cm.

Angular momentum, symbolized here as J or L, has dimensions of length squared in geometrized
units. The conversion is

c3

G
J(cm2) = J(g cm2 s−1) (13)

For convenience with mathematical manipulations, the spin of a black hole is characterized by the
quantity a = J/M , where J is the angular momentum of the hole. The conversion between geometric
units and c.g.s. units is

a = J(cm2)

M(cm)
= J(g cm2 s−1)

M(g)c
(14)

so that spin has dimensions of length. Since mass also has dimensions of length, it is often useful to
define a dimensionless spin parameter, a∗ = a/M . If the mass and angular momentum of a spinning
object are known in conventional units, a dimensionless a/M follows from

a∗ = a

M
= c

G

J

M2

∣∣
c.g.s. (15)

5.2. The Schwarzschild metric
A spacetime metric provides a “rule” by which to relate measurements of events in different frames.

The Minkowski metric

dτ 2 = dt2 − (dx1)2 − (dx2)2 − (dx3)2 (16)

can be expressed in a more concise form if we define a set of metric coefficients ηαβ . Thus, one can
write dτ 2 = −ηαβ dxα dxβ , where dx0 = dt , η00 = −1, ηjj = 1 for j = 1 ,2, 3, and where summation
is performed over all repeated indices.

More generally, a spacetime metric has the form

dτ 2 = −gµν dxµ dxν (17)

where the metric coefficients can be functions of the spacetime coordinates. The Schwarzschild solution
to the Einstein field equations yields the metric

dτ 2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2 (dθ2 + sin2 θ dφ2) (18)

9As an easy-to-remember conversion, the gravitational radius of an object is 1.477 km per solar mass.
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which is the vacuum solution to the spacetime outside a spherical mass M (for a derivation, see, for
example, refs. 132 and 133). The metric coefficients gµν can be read off directly. The t-coordinate is the
time as measured by a distant observer. The r-coordinate, called the reduced circumference, is defined
such that the circumference of a circle centered on the gravitating mass is precisely 2πr . The θ - and
φ-coordinates are defined such that r dθ and r dφ, respectively, measure differential distances along
tangents to a circle at r , again, centered on the gravitating mass. For r � 2M , the Schwarzschild metric
reduces to the Minkowski metric (16), after a transformation between spherical polar coordinates and
Cartesian coordinates. There is, however, no transformation of coordinates that can globally reduce
the Schwarzschild metric to the Minkowski metric. Thus, the spacetime described by the former is
said to be curved, whereas the Minkowski spacetime is said to be flat — “flat” in the sense that it is
quasi-Euclidean.

Since the metric is spherically symmetric, the motion of test particles and photons is restricted to a
plane. This plane, with no loss of generality, can be chosen to be the equatorial plane (θ = π/2). For
events occurring within the equatorial plane, we can also set dθ = 0 in (18), which gives the simplified
proper time interval

dτ 2 =
(

1 − 2M

r

)
dt2 −

(
1 − 2M

r

)−1

dr2 − r2 dφ2 (19)

The radial proper length interval ds (ds2 = −dτ 2) is given by

ds =
(

1 − 2M

r

)−1/2

dr (20)

5.3. Gravitational time dilation and gravitational red shift
Even before Einstein arrived at his final formulation of the field equations, he argued the case for

gravitational time dilation. The standard version of his derivation appeared in 1911, although he was
aware of the effect as early as 1907 [1]. We provide here a derivation that follows the one presented in
ref. 132, except that we will take advantage of the explicit form of the Schwarzschild solution, thereby
deriving a result that will be useful later.

Imagine that two identical clocks are manufactured in a region of flat spacetime and calibrated so that
every hour the clocks chime together, each clock thus marking proper time intervals�τ corresponding
to 1 h. Two experimenters, A and B, are enlisted. A moves one clock to a position at distance rA from
a gravitating object. B moves the other clock to a position at distance rB > rA from the mass (Fig. 3).
At each chiming, A records the time, and will maintain that the passage of time from chime to chime
�tA is precisely 1 h. According to (19), A measures �tA = �τ/

√
1 − 2M/rA. Light pulses are sent

from rA to rB at each chiming of A’s clock, and B records the arrival times. Light pulses require time –
according to observers in any frame – to travel from A to B. Nevertheless, B records a pulse-to-pulse
time separation of precisely �tA, provided that the light paths are identical for each pulse. When he
compares the chime-to-chime record of his own clock, however, he finds that �tB < �tA, where B
will insist that �tB is 1 h. B measures �tB = �τ/

√
1 − 2M/rB. B is forced to conclude that time

runs slower at rA than at rB. If the experiment were altered such that B sent pulses to A, then A would
be forced to conclude that time runs faster at rB than at rA. This effect is known as gravitational time
dilation.

For our purposes, it is more appropriate to express time dilation in terms of light frequencies.
Referring to the experiment above, and replacing the clocks by radiating atoms, we label by νrec the
frequency of the light originating at A as observed at B, and label by νem the frequency of an identical
source at B as observed by B. The ratio of the frequencies is, therefore,

νrec

νem
= �tB

�tA
=
(

1 − 2M/rA
1 − 2M/rB

)1/2

(21)
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Fig. 3. Gravitational time dilation. Two identically manufactured clocks are positioned at points A and B,
with rB > rA with respect to a gravitating mass. An observer at A sends pulses to observer at B at each
chiming of the clock at A. Observer at B notes that chime frequency is higher at B than at A and concludes
that time runs slow at A. See text for further discussion.

time at point Btime at point A

∆tA ∆tA

light pulses
from A to B

∆tB

increasing distance from gravity source

The case of primary interest — observing radiation from a distant source — corresponds to rB → ∞.
This gives us the expression for the gravitational redshift for a Schwarzschild black hole, according to
the observer at infinity,

ν∞ = νem

(
1 − 2M

r

)1/2

(22)

As r → 2M , the observer at infinity finds that ν∞ → 0. For this reason, the radius r = 2M is sometimes
referred to as the surface of infinite redshift. It is important to remember that this expression is valid
only for the case of a stationary source and a stationary receiver. Below, we will accommodate the case
of a source in orbit around a black hole.

5.4. Conserved quantities
Before discussing the motion of particles and photons in the Schwarzschild metric, we will need

two conservation laws, which follow from the equations of motion. The equations of motion of free
particles in curved spacetime can be derived from the Euler–Lagrange equations, for an appropriate
Lagrangian �, according to

d

dp

∂�

∂ẋα
− ∂�

∂xα
= 0 (23)

where the dot denotes differentiation with respect to a timelike parameter p. A useful form for the
Lagrangian is

� = 1

2
gαβ

dxα

dp

dxβ

dp
(24)

with p = τ/m, as shown in ref. 10. For the Schwarzschild metric, again reducing the problem to motion
in the θ = π/2 plane, this is

2� = −
(

1 − 2M

r

)(
dt

dp

)2

+
(

1 − 2M

r

)−1 ( dr

dp

)2

+ r2
(

dφ

dp

)2

(25)
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Fig. 4. (Left panel) Effective potential for a test particle trajectory in the Schwarzschild metric (29) with
L/mM = 3.95. The broken lines correspond to five different energies, increasing from bottom to top. See
text for a discussion. (Right panel) Effective potential for various values of the angular momentum: from
bottom to top, L/mM = [0., 2.5, 2

√
3, 3.7, 4.0, 4.3, 4.6, 4.9]. Intersections of the broken line with potential

curves marks positions of stable circular orbits. The innermost stable circular orbit occurs at r/M = 6,
corresponding to L/mM = 2

√
3.

unstable circular orbit

bound non-circular orbit

stable circular orbit

capture orbit

capture/escape orbit

M M

Evaluating (23) for the t-coordinate, we find

E

m
=
(

1 − 2M

r

)
dt

dτ
(26)

where the constant of the motion, labeled E/m, is identified with the energy per unit mass of the
particle, since (26) reduces to the special relativistic expression E = m dt/dτ for large r , i.e., the
time-component of the momentum four-vector. Similarly, evaluating (23) for the φ-coordinate, we find
a second constant of the motion
L

m
= r2 dφ

dτ
(27)

where L/m can be identified as the angular momentum per unit mass.

5.5. The effective potential
The usual Newtonian approach to the problem of calculating the orbit of a test particle under the

influence of a spherically symmetric gravitational field involves finding two constants of the motion —
energy and angular momentum — and recasting the radial equation in terms of an effective potential.
The effective potential is the sum of the gravitational potential and a centrifugal term. From an analysis
of the radial excursions in this effective potential, one finds the two basic orbit classes — elliptical
and hyperbolic — corresponding to bound and unbound motion, respectively, with circular orbits cor-
responding to a special case of elliptical orbits. A similar, and quite fruitful, approach is adopted to
analyze the orbit classes for motion in the Schwarzschild metric.

To derive the effective potential for the Schwarzschild metric, notice that (19), (26), and (27) can be
treated as a set of three equations in the four unknowns dτ , dt , dr , and dφ. Therefore, we can eliminate
dt and dφ in (19) to obtain(

dr

dτ

)2

=
(
E

m

)2

−
(

1 − 2M

r

) [
1 + (L/m)2

r2

]
(28)

and one defines the effective potential according to(
V

m

)2

=
(

1 − 2M

r

)[
1 + (L/m)2

r2

]
(29)
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Note that the effective potential cannot be associated with an actual potential energy, as in Newtonian
mechanics; in general relativity, it is impossible to separate energy into a kinetic term and a potential term.
Rather, the effective potential merely allows us to characterize certain aspects of particle trajectories
without integrating the equations of motion.

One example of the effective potential is plotted in the left panel of Fig. 4; as r → ∞, V (r) → 1
as can be seen from (29). The curve is, in fact, qualitatively similar to analogous curves derived from
the Newtonian prescription, except for small radii, where the two differ dramatically, i.e., the repulsive
centrifugal barrier that extends to arbitrarily small radii in the Newtonian potential is absent at small
radii in the Schwarzschild effective potential. Any inward bound particle that finds itself within the
region of this downturn of V , which has been referred to as “the pit in the potential” [164], is destined
to fall through the event horizon. Energies corresponding to such capture orbits are indicated by the
top two broken lines in Fig. 4. The top line, with E/m > 1, is labeled “capture/escape orbit” because
inward bound particles are captured, whereas outward bound particles can escape to infinity. The energy
level labeled “capture orbit” corresponds to a particle that, if inward bound, passes through the event
horizon, and, if outward bound, arrives at apastron, returns, since E/m < 1, then passes through the
event horizon. Below that is the level for a particle with energy corresponding to an unstable circular
orbit at r = rus. Test particles with this energy, whether directed inward from r > rus or directed
outward from r < rus, will end up on this orbit, and remain there until perturbed. The next orbit is
bound, since particles with this energy transit between two turning points. The Newtonian analogy for
this orbit is an ellipse. In the Schwarzschild metric, the azimuthal oscillation frequency exceeds the
radial oscillation frequency, leading to an orbit with a precessing apastron, with prograde precession.
The final trajectory class, corresponding to the local minimum of V , is a stable circular orbit, discussed
in the next section.

5.6. Circular orbits in the Schwarzschild metric

The most important general relativistic effect for X-ray line shapes is the gravitational redshift. The
redshift formula is given in (22), and we intend to use that in our discussions of line profiles. However,
as remarked there, the formula is valid only in the case of a stationary emitter and receiver, and the
emitters in an accretion disk are not stationary. In fact, we expect relativistic velocities. To preserve the
use of the simple equation for the redshift, we need first to know the photon energies as they would
be measured by local stationary observers (dr/dτ = dφ/dτ = dθ/dτ = 0), distributed in radius. We
denote with the subscript lso measurements made by such observers. Once we know the local photon
energy distribution, it is then a simple matter to calculate the distribution at infinity by application of
(22). Since disk material is, in the approximation that disk annuli describe circular orbits, passing the
stationary observer with azimuthal velocity r dφ/dtlso, we can simply apply a Lorentz transformation
that relates the spectrum in the disk frame to the spectrum measured by the stationary observer. The
effective potential dictates a relationship between the angular momentum and the radius of circular
orbits. Once we find this relationship, we proceed to the radial dependence of the velocity of circular
orbits.

5.6.1. Angular momentum — radius relationship for circular orbits

The condition for a circular orbit, ∂V/∂r = 0, yields a relationship between r and L. Using (29),
this is

r2 −
(
L

m

)2
r

M
+ 3

(
L

m

)2

= 0 (30)
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which has the two solutions

r± = (L/m)2

2M

[
1 ±

(
1 − 12M2

(L/m)2

)1/2
]

(31)

The stability condition ∂2V/∂r2 > 0 shows that a circular orbit at r+ is stable, while the one at r− is
unstable. Equation (31) thus provides the radii of both the unstable circular orbit and the stable circular
orbit for a given value ofL/m. We further see that, owing to the presence of the square root, the domain
of allowed L/m yielding a circular orbit is restricted to L/m > 2

√
3M . Setting L/m to this minimum

value in (31), we find that the radius of the innermost stable circular orbit risco is equal to 6M .
The existence of the innermost stable circular orbit, a uniquely general relativistic feature, can be

appreciated by inspection of the right panel of Fig. 4, which shows the effective potential for several
values of the angular momentum. The intersection of the broken line with each effective potential curve
marks the radial position of each stable circular orbit. The trend in the behavior of V with L/m is clear:
as L/m decreases, the extent of the potential barrier decreases, as well. As L/m → 2

√
3M , the barrier

flattens, and disappears for L/m < 2
√

3M , thereby eliminating the local minimum. All inward bound
trajectories with L/m < 2

√
3M cross the event horizon.

5.6.2. Energies of circular orbits
From (28), setting dr/dτ = 0 for a circular orbit,(
E

m

)2

=
(

1 − 2M

r

) [
1 + (L/m)2

r2

]
(32)

From (30), we have(
L

m

)2

= r2

(r/M)− 3
(33)

which, when substituted into (32), gives

E

m
= 1 − 2M/r

(1 − 3M/r)1/2
(34)

This expression for energy is valid only for r ≥ 6M because of the stability restriction.
At the ISCO, where r/M = 6, we have (E/m)isco = (8/9)1/2. Therefore, the energy change per

unit mass of a test particle as its circular orbit degrades from a large distance to the ISCO is

�

(
E

m

)
= 1 −

(
8

9

)1/2

≈ 0.057 (35)

i.e., the test particle loses an energy equivalent to about 6% of its rest mass energy as it works its way
down to the ISCO in a succession of circular orbits. This is often taken as the maximum accretion
efficiency η of a Schwarzschild black hole, in the sense that Lacc = ηṀaccc

2.

5.6.3. Velocities of circular orbits
We need to find the radial dependence of the velocities of circular orbits vφ = r dφ/dtlso as they

would be measured by locally stationary observers distributed in r . Proper time is measured in the disk
frame, so that we can write

vφ = r
dφ

dτ

dτ

dtlso
(36)
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and then relate dtlso and dτ by a Lorentz transformation

dtlso = (1 − v2
φ)

−1/2 dτ (37)

Using angular momentum conservation (27), (36) becomes

v2
φ = 1

r2

(
L

m

)2

(1 − v2
φ) (38)

Substituting for L/m from (30), and recalling that that equation is valid only for stable circular orbits,
some rearrangement gives

v2
φ = M/r

1 − 2M/r
(39)

which decreases monotonically with radius. The domain of validity is the same as the domain for which
stable circular orbits can exist, i.e., r ≥ 6M . The velocity of a particle in a circular orbit at the ISCO
can be found from (39) by substituting r = 6M , from which we find that visco = 1/2.

For the sake of interest, let us find the linear velocity v∞ and angular velocity �∞ of matter in a
circular orbit as observed at infinity. To find the angular velocity, we start with the angular momentum
conservation law (27) and write

�∞ = L/m

r2

dτ

dt
(40)

so that we need to relate dt and dτ for a circular orbit. This is accomplished by manipulating a simplified
form of the metric (19), setting dr = 0

dτ 2 =
(

1 − 2M

r

)
dt2 − r2dφ2 (41)

which, after eliminating dφ/dτ , again using (27), becomes

(
1 − 2M

r

)(
dt

dτ

)2

= 1 + (L/m)2

r2 (42)

Substituting for L/m from (33) and simplifying gives

dτ

dt
=
(

1 − 3M

r

)1/2,

r ≥ 6M (43)

Substituting this back into (40), again using (27), gives

�∞ =
(
M

r3

)1/2

, r ≥ 6M (44)

which is identical to the Newtonian result. The linear velocity is simply r�∞, i.e.,

v∞ =
(
M

r

)1/2

, r ≥ 6M (45)

which is also identical to the Newtonian result.
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5.7. The motion of light in the Schwarzschild metric
For light motion (technically, for the motion of massless particles), we derive the governing equations

by starting with the equations of motion for massive particles, then take the limit m → 0. Starting with
(28), we have(

dr

dt

)2 ( dt

dτ

)2

=
(
E

m

)2

−
(

1 − 2M

r

) [
1 + (L/m)2

r2

]
(46)

Using the equation for the conserved energy (26), the previous expression gives(
dr

dt

)2

=
(

1 − 2M

r

)2

−
(

1 − 2M

r

)3 [
m2

E2 + L2

r2E2

]
(47)

Taking the limit m → 0, and defining the impact parameter b = L/E, we find(
dr

dt

)2

=
(

1 − 2M

r

)2 [
1 − b2

r2

(
1 − 2M

r

)]
(48)

For the azimuthal motion, we combine (26) and (27) to give

dφ

dt

E

m

(
1 − 2M

r

)−1

= L/m

r2 (49)

which becomes

dφ

dt
= b

r2

(
1 − 2M

r

)
(50)

Therefore, once we know the impact parameter (see below), the light path can be calculated as param-
eterized by our measure of time t . By eliminating dt between (48) and (50), we can plot the trajectory
r(φ) according to

dr

dφ
= r2

b

[
1 − b2

r2

(
1 − 2M

r

)]1/2

(51)

5.7.1. Effective potential for light motion
We wish to obtain an effective potential for light, analogous to that found for particle motion, to gain

a quick qualitative understanding of light motion, without having to perform numerical integrations of
the equations of motion. Following ref. 146, we need the relations between time and radial displacements
as measured by a local stationary observer and those measured by a distant observer, which results in

drlso

dtlso
=
(

1 − 2M

r

)−1 dr

dt
(52)

Then, (48) can be written

1

b2

(
drlso

dtlso

)2

= 1

b2 − 1

r2

(
1 − 2M

r

)
(53)

and we identify as the effective potential for light

V (r) = 1

r2

(
1 − 2M

r

)
(54)
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Fig. 5. Effective potential for light motion near a Schwarzschild black hole, see (54). Three sets of (r, b)
constitute the range of possibilties for light motion in the Schwarzschild potential, where b is the impact
parameter. Light arrows indicate escape orbits, heavy arrows are capture orbits. The vertical broken line
shows the position of the unstable circular orbit.

r/M

M
2 V

lig
ht

b/M > (27)1/2

b/M < (27)1/2

b/M = (27)1/2

Note the simplicity of the description of light trajectories compared to particle trajectories, where, in
the latter case, the geodesics depend both on energy and angular momentum.

The effective potential for light is plotted in Fig. 5. The peak of V occurs at r = 3M , for which
Vpeak = 1/27M2. For the critical impact parameter, bcrit = 3

√
3M , drlso/dtlso = 0 at r = 3M . This is

the only radius for which a massless particle can move in a circular orbit. However, the orbit is clearly
unstable; any perturbation to the orbit will lead to either capture or escape.

For the purposes of determining the range of impact parameters that lead to capture by the black
hole, the presence of the potential peak at r = 3M and the critical impact parameter divides space into
two. First, consider light rays emanating from radii ro > 3M . From Fig. 5, we see that all outwardly
directed photons escape to infinity. For inwardly directed rays, those for which b < 3

√
3M are captured.

For photons originating inside r = 3M , all inwardly directed photons are captured. Outwardly directed
photons are captured if b > 3

√
3M , and escape otherwise.

Using the effective potential, we can calculate the fraction of photons that will be captured by the
black hole if emitted isotropically by a stationary source at r . First, we need to know how to calculate b
for various cases of interest. Suppose photons are being launched at various angles from a point r near
the black hole. We can find b by referring to the azimuthal equation of motion. From (50), reckoning
time according to a local stationary observer, we have

r
dφ

dtlso
= vφ = b

r

(
1 − 2M

r

)1/2

(55)

Using the coordinate system illustrated in the right panel of Fig. 6, this becomes

b = r

(
1 − 2M

r

)−1/2

sinψlso (56)

As an aside, a distinction needs to be made between angles measured by a local stationary observer
and those calculated by a distant observer. The relation between ψlso and the same angle according to

© 2005 NRC Canada



Liedahl and Torres 1203

Fig. 6. (Left panel) Light trajectories in the Schwarzschild metric (see (51)) for point of origin r = 6M for
12 impact parameters confined to the range 5.0M–5.9M . (Right panel) The angle ψ between a light ray and
a radius vector, as measured by a local stationary observer, used to define the impact parameter (see (56)).
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a distant observer ψ∞ can be found as follows. Let the radial displacement measured by the LSO be
denoted by ds. Then

tanψ∞ = r dφ

dr
= r dφ

ds

ds

dr
=
(

1 − 2M

r

)−1/2

tanψlso (57)

where we have used (20) to relate ds and dr .
Now, for r > 3M , we already know that all outwardly directed photons escape. Inwardly directed

photons are captured if sinψlso < 3
√

3(M/r)
√

1 − 2M/r . This results in

fcapt = 1

2

⎡
⎣1 −

√
1 − 27

(
M

r

)2 (
1 − 2M

r

)⎤⎦ (r ≥ 3M) (58)

For r < 3M , we already know that inwardly directed photons are captured. Outwardly directed photons
are captured if sinψlso > 3

√
3(M/r)

√
1 − 2M/r , which results in

fcapt = 1

2

⎡
⎣1 +

√
1 − 27

(
M

r

)2 (
1 − 2M

r

)⎤⎦ , r ≤ 3M (59)

The capture fraction is 1/2 for r = 3M , and approaches unity as r → 2M . A plot of fcapt versus r is
plotted in Fig. 7. Calculating the captured fraction for material moving in a disk must also account for
relativistic beaming. In other words, a moving isotropic photon source will, to varying degrees, appear
anisotropic to the stationary observer, with its emission concentrated in the direction of motion.

5.7.2. The speed of light
One of the more peculiar aspects of light propagation near a black hole is that those performing

calculations in flat spacetime must account for the apparent reduction of the speed of light. According
to a distant observer, the speed of light for pure radial motion, from (48), with b = 0, is

dr

dt
= ±

(
1 − 2M

r

)
(60)
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Fig. 7. Capture fraction for stationary isotropic photon emitters plotted against radius for the Schwarzschild
metric and for Euclidean space. In the latter case, the capture fraction is simply the fractional solid angle
subtended at r by a sphere of radius 2M . For the Schwarzschild case, light bending is included.
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which approaches unity for large r , and approaches zero as r → 2M . For example, according to an
observer at r , the time �t for a light pulse to propagate radially from a position ro < r to r is

�t

M
= r − ro

M
+ 2 ln

(r/2M)− 1

(ro/2M)− 1
(61)

which shows the effect of the reduced speed of light (2nd term) compared to the Euclidean value (1st
term). Here, we are measuring time in multiples ofM . The conversion between seconds and centimeters
is �t(s) = (GM/c3)�t(cm).

The apparent speed of light for pure azimuthal motion is, from (50)

r
dφ

dt
= ±b

r

(
1 − 2M

r

)
= ±

(
1 − 2M

r

)1/2

(62)

where we have substituted for b from (56). Note that this is not the same as the speed of light for pure
radial motion (60).

Combining (60) and (62), we can evaluate the speed of light for arbitrary trajectories according to
a distant observer

c∞ =
[(

dr

dt

)2

+
(
r

dφ

dt

)2
]1/2

=
(

1 − 2M

r

)(
1 + 2b2M

r3

)1/2

(63)

While this apparent nonconstancy of the speed of light might seem somewhat disorienting, it is important
to realize that we do not actually measure this speed. Measurements must be made locally. We can
calculate what a local stationary observer will measure by transforming (60) and (62) to the frame of
such an observer.

drlso

dtlso
=
(

1 − 2M

r

)−1 dr

dt
=
[

1 − b2

r2

(
1 − 2M

r

)]1/2

(64)
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Fig. 8. Time dependence of an initially radial planar light pulse near a Schwarzschild black hole. Time
intervals are measured from initiation of pulse at t = 0. Deviation from perfectly circular wave fronts
illustrates the combined effect of a variable speed of light and light bending, as calculated by a distant
observer. Plots based on integrations of 51.
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(
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r
dφ
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r

(
1 − 2M

r

)1/2

(65)

These two equations give

clso =
[(

drlso

dtlso

)2

+
(
r

dφ

dtlso

)]1/2

= 1 (66)

Therefore, locally stationary observers always measure c = 1. We, as distant observers, must contend
with the fact that light appears to propagate at varying speeds, its speed depending on both the radial
coordinate and the impact parameter.

An example that illustrates the effect of a variable speed of light is shown in Fig. 8. A planar
radial burst of light is emitted from r = 6M near a Schwarzschild black hole. Shown in Fig. 8 are the
trajectories of a set of rays with a distribution of impact parameters, the endpoint of each trajectory
indicating the progression of the leading edge of the pulse at four times: t = 6M , 12M , 18M , and
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24M , where the time is measured as a multiple of GM/c3. The reduced speed of light at small radii
compared with larger radii is evident in the plot for t = 6M by the distortion from a perfect circle of the
endpoints of the light ray pattern. With a knowledge of the disk structure (or, more likely, a model), one
can imagine exploiting the unique light propagation physics in a black hole metric to locate the position
of such a pulse as it irradiates different portions of the disk. Conversely, with a model of the origin
for a pulse, or X-ray flare, the disk structure can be mapped, since the disk will respond to changes in
the illumination pattern. Since such an effect occurs on a time scale that is measured in multiples of
GM/c3, it is practical to observe “light echoes” in AGN (hundreds to thousands of seconds), but not in
black hole X-ray binaries (∼1 ms).

This leads to the concept of reverberation mapping, which is among the programs planned for
future X-ray observatories, such as Constellation-X. We will not discuss the details of this ambitious
goal here. However, a few comments are in order. Given that the model of X-ray fluorescence from
AGN and black hole X-ray binaries involves the spectral response of an accretion disk to illumination by
hard X-rays, and that the hard X-ray continuum flux is observed to vary, it makes sense to ask whether
changes in the shapes and intensities of fluorescence lines in response to continuum variability can
elucidate both the nature of continuum production and disk structure. The basics of such a program,
for the case of a Schwarzschild black hole, have been laid out in ref. 134. It was shown that a variable
source of localized hard X-ray illumination placed at the center of a disk would cause a characteristic
response in the profile of a fluorescence line. In this case, with a centrally located illumination source,
the inner disk would respond first, affecting the red and blue extremes of the profile. Because of light
travel times, the rest of the profile would respond at later times. It is shown that, in principle, the mass
of the black hole can be determined. Measurements of black hole spin (see Sect. 6) are also plausibly
within reach [135]. In a more general case, reverberation could involve a nonaxial illumination source
in the Kerr geometry, time-dependent modifications to the disk structure, and multiple, overlapping
X-ray flares, with a distribution in both intensity and position. In such models, the varying speed of light
propagation figures prominently. For example, as discussed in ref. 136, nonaxial variable illumination
causes the redward portion of the line profile to lag the rest of the profile, indicative of an inward moving
pulse that sweeps across the disk, slowing to zero velocity at the horizon.

Interestingly, current studies of AGN in which the X-ray continuum is observed to vary fail to show
the expected variability in the iron Kα line complex [137–139], although efforts attempting to reconcile
this problem are underway [140].

5.8. Minimum and maximum frequency shifts
We assume that a locally stationary observer measures the frequency distribution of a radiating

particle that moves in a circular orbit at velocity vφ and emits photons of frequency νo in its rest
frame. The minimum and maximum frequencies measured by the LSO are determined by a Lorentz
transformation

νlso = γ νo (1 ± vφ) (67)

where vφ is given by (39), and γ = (1 − v2
φ)

−1/2. Then from (22), we can find the frequency observed
at infinity according to

ν∞ =
(

1 − 2M

r

)1/2

νlso (68)

This is straightforward, and works out to

(ν∞)± = νo

(
1 − 2M/r

1 − 3M/r

)1/2
[(

1 − 2M

r

)1/2

±
(
M

r

)1/2
]

(69)

© 2005 NRC Canada



Liedahl and Torres 1207

At the ISCO, we find ν−∞ = (
√

2/3)νo and ν+∞ = √
2νo [10]. This analysis also assumes that the

observer at infinity sees the full red and blue shifts of the emitted photons. In more realistic cases, the
line profile is narrower, since the disk is likely to be inclined.

Note that, although an observer at infinity marks the velocity of a circular orbit as being v∞ = √
M/r ,

we cannot properly calculate the photon energies (as above) unless we analyze the problem in the local
frame of the orbiting matter. The lesson is that there is no Lorentz transformation that globally reduces
curved spacetime to the Minkowski metric.

We revisit the minimum and maximum frequency shifts in a later section, after we derive the
analogous quantities for Kerr black holes.

6. Spinning black holes — the Kerr metric

We have already remarked on the ubiquity of angular momentum in the cosmos.Angular momentum
is also likely to play a role in the behavior of spacetime near black holes. Stellar precursors to galactic
black holes rotate, thus imbuing these stars with angular momentum. Near the center of a galaxy, gas
that supplies fuel to supermassive black holes in AGN is in motion, and thus carries angular momentum
with respect to the black hole. In both cases, then, we expect the black hole to possess angular mo-
mentum. Therefore, improved treatments of the physics in the black hole environment should include
modifications to the spacetime geometry induced by spin [142].

In 1963, Kerr [37] presented a solution for the metric outside a spinning object at the First Texas
Symposium on Relativistic Astrophysics (see ref. 143 for a description of these proceedings). The
physical implications of this solution were pursued over the course of the next few years. More recently,
observable properties of the emission and timing properties of accretion disks have led to attempts to
measure black hole spin.

The Kerr metric is given in Boyer–Lindquist coordinates [144] as

dτ 2 =
(

1 − 2Mr

�

)
dt2 + 4Mar sin2 θ

�
dt dφ − �

�
dr2 −� dθ2 − R2

a,θ sin2 θ dφ2 (70)

where

� = r2 + a2 cos2 θ

� = r2 − 2Mr + a2

R2
a,θ = r2 + a2 + 2Mra2�−1 sin2 θ

(71)

For motion in the equatorial plane (θ = π/2), the Kerr metric is

dτ 2 =
(

1 − 2M

r

)
dt2 + 4Ma

r
dt dφ − r2

�
dr2 − R2

a dφ2 (72)

where

R2
a = r2 + a2 + 2Ma2

r
(73)

We show below that Ra is the reduced circumference in the equatorial plane of a Kerr black hole.

6.1. The Kerr event horizon
The radial coordinate of the horizon rH is defined as that radius at which the coefficient of the dr2

term of the metric blows up. For the Kerr metric this occurs when � = 0, which gives

rH = M +
√
M2 − a2 (74)
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This shows us that the maximum spin consistent with a real-valued radial coordinate for the horizon is
simply M . The radial coordinate of the horizon thus ranges from 2M (a = 0) down to M (a = M).
Detailed considerations concerning the spin-up of a black hole by accreting matter shows that the
maximum spin is not M , but rather 0.998M [145]. The case a = M (or a = 0.998M) is referred to as
an extreme Kerr black hole, and the black hole is said to be maximally spinning.

6.2. The static limit and the dragging of inertial frames
The following derivation follows that in ref. 10. The relation gµνpµpν = −m2 is equivalent to the

condition gµνuµuν = −1, where uµ is a component of the velocity four-vector. Consider an observer
at fixed r and θ , so that dr = 0 and dθ = 0. Then

gtt (u
t )2 + 2gtφu

tuφ + gφφ(u
φ)2 = −1 (75)

where the metric coefficients can be read off from (70). Rearrangement of the previous equation gives

(ut )2
[
gtt + 2gtφ

uφ

ut
+ gφφ

(uφ)2

(ut )2

]
= −1 (76)

If we let uφ/ut = dφ/dt ≡ ω, then we require

ω2 + 2
gtφ

gφφ
ω + gtt

gφφ
< 0 (77)

This restricts ω to the range

|gtφ |
gφφ

⎡
⎣1 −

√
1 − gttgφφ

g2
tφ

⎤
⎦ ≤ ω ≤ |gtφ |

gφφ

⎡
⎣1 +

√
1 − gttgφφ

g2
tφ

⎤
⎦ (78)

or ωmin < ω < ωmax. Note that gtφ is always negative, and that gφφ is always positive. The metric
coefficient gtt can be positive or negative

gtt < 0 if r > M + √
M2 − a2 cos2 θ

gtt > 0 if M < r < M + √
M2 − a2 cos2 θ

(79)

Thus, whenever gtt > 0 (small radii), we see that ωmin > 0; the observer is swept around the black
hole, and no action on the part of the observer can change that. Where gtt < 0 (large radii), ωmin < 0,
and retrograde motion is allowed. The critical boundary, the mathematical surface inside which matter
is dragged irresistibly in the prograde direction is called the static limit, which, from (79) is

rstat = M +
√
M2 − a2 cos2 θ (80)

which corresponds to gtt = 0.
The peculiar behavior of spacetime near the static limit can be illustrated [146] if we imagine

launching light pulses in the azimuthal direction, first in the prograde direction, then in the retrograde
direction, at some radius r near a spinning black hole. We wish to find dφ/dt , the angular velocity of the
light pulse according to distant observers, for these two cases. For simplicity, we work in the equatorial
plane. Then, with θ = π/2, dr = 0, dθ = 0, and the condition gµνuµuν = 0, we find the following
quadratic for dφ/dt :

R2
a

(
dφ

dt

)2

− 4Ma

r

dφ

dt
−
(

1 − 2M

r

)
= 0 (81)
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Fig. 9. Schematic of a disk-accreting Kerr black hole (a = 0.9M) in cross section, using t , r , θ , φ
coordinates, illustrating various geometric relations. The dark circle is the black hole, bounded by its event
horizon. The gray region, delineated by the horizon and the static limit (broken lines) is the ergosphere,
cylindrically symmetric with respect to the spin vector. The accretion disk is assumed to lie in the equatorial
plane of the hole. The disk is truncated near the hole according to the radius of the innermost stable circular
orbit appropriate to the spin. Inside the ISCO, matter free-falls through the plunging region and crosses the
horizon. Tapering of the disk is schematic only, suggesting a general trend of geometrical thickening with
radius. Also, see Fig. 12.
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which has the solution

dφ

dt
= 2Ma

rR2
a

⎡
⎣1 ±

√
1 − r2R2

a

4M2a2

(
1 − 2M

r

)⎤⎦ (82)

From (80), the static limit in the equatorial plane is rstat = 2M , which, when substituted into (82),
gives the two solutions dφ/dt = 4Ma/rR2

a = a/(a2 + 2M2) and dφ/dt = 0. The pulse emitted in
the retrograde direction appears to stand still. Inside the static limit, retrograde pulses appear, in fact, to
move initially in the prograde direction. Although we do not pursue it here, it is worth noting that the
region between the static limit and the horizon is called the ergosphere, after the Greek word ergon, for
work, since energy can, in principle, be extracted from it [147]. An illustration of the size and shape of
the ergosphere is shown in Fig. 9, along with other components of an accreting black hole.

An expression for the rate at which spacetime is dragged around a spinning black hole can be derived
from the momentum conservation law, which, as in Sect. 6 for the Schwarzschild metric, we derive from
the Euler–Lagrange equation for φ. A suitable Lagrangian for motion in the equatorial plane is given
by

� = −1

2

(
1 − 2M

r

)
ṫ2 − 2Ma

r
ṫφ̇ + r2

2�
ṙ2 + R2

a

2
φ̇2 (83)

where the dot denotes differentiation with respect to any parameterp along the particle’s world line [10].
The Euler–Lagrange equation for the φ-coordinate results in

R2
a

dφ

dp
− 2aM

r

dt

dp
= L (84)

If dp = dτ/m, then we find an expression that can be compared with the case for the Schwarzschild
metric (26)

R2
a

dφ

dτ
= L

m
+ 2aM

r

dt

dτ
(85)
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Fig. 10. Plots of photon trajectories with zero angular momentum near a Kerr black hole, (left panel) for
a = 0.2M and (right panel) a = 0.998M illustrating the frame dragging effect. Circles are lines of constant
r . Plots are based on integrations of (116).
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x/M
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to which it reduces for a → 0. The second term on the right, which is proportional to the black hole
spin, shows that a particle with dφ/dτ = 0 must have negative angular momentum. In fact, for massive
particles and massless particles alike, if L = 0, then

dφ

dt
= 2aM

rR2
a

≡ ωdrag (86)

According to a distant observer, a particle with zero angular momentum appears to rotate in the direction
of the black hole spin (i.e., following the right-hand rule). This effect is known as the dragging of inertial
frames. The drag frequency increases with decreasing radius. Frame dragging can also be described
as follows: Imagine yourself in a rocket near a spinning black hole. Looking at the fixed stars for
reference, you find that you require a thrust in the positive azimuthal direction (i.e., pointed toward the
spin direction) to hold the rocket in a position such that the stars overhead appear not to move. It is said
that spacetime itself is moving (see Fig. 10).

The dragging of inertial frames occurs outside of any spinning body. As an example, we use (86) to
estimate ωdrag caused by the Earth’s rotation. In conventional units, the drag frequency at the Earth’s
surface is ωdrag ≈ 2GIωE/(c

2R3
E), where I is Earth’s moment of inertia, RE is its radius, and ωE is

its rotation frequency. The moment of inertia of the Earth is 0.33MER
2
E [8], where the deviation from

2/5 in the multiplier is due to the nonuniform density distribution of the Earth’s mass. Taking ME =
6.0 × 1027 g, RE = 6.4 × 108 cm, and ωE = 7.3 × 10−5 s−1, we find ωdrag = 219 milliarcseconds/year
(mas yr−1), large enough to be measured with current technology. Recently, the LAGEOS mission, a
pair of laser-ranged satellites in orbits with aphelia of approximately 12 000 km, measuredωdrag, finding
a value that is 99 ± 5% of the value predicted by GR [148]. Gravity Probe-B is expected to reduce the
uncertainty in the measurement to 1%.

Interestingly, we find for the Earth that a = 7.3 × 102ME. The restriction a ≤ M is clearly not
a general constraint on material bodies; instead, it can be viewed as a necessary condition for matter
lying inside its event horizon.
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6.3. Gravitational redshift in the Kerr metric
In the Schwarzschild metric, we found the relation between proper time and coordinate time by

considering two stationary observers at different radii, and found that the t t-component of the metric
contained the necessary information. An analogous approach in the Kerr metric involves an observer,
called a zero angular momentum observer (ZAMO), moving along the φ-direction with an angular
velocity ωdrag given by (86). By a simple transformation, the metric can be diagonalized, i.e., we can
decouple the t and φ coordinates, then relate dt to dτ . Let dφ = ωdrag dt + dφr , where dφr is an
azimuthal displacement measured in the ZAMO frame. The case of greatest interest is that of an emitter
in the equatorial plane. Therefore, for pure azimuthal motion, (72), with dr = 0, becomes

dτ 2 =
(

1 − 2M

r

)
dt2 + 4Ma

r
dt dφ − R2

a dφ2 (87)

Substituting the dφ transformation into this form of the metric yields a new metric that uncouples the
t- and φ-coordinates

dτ 2 =
(

1 − 2M

r
+ 4M2a2

r2R2
a

)
dt2 − R2

a dφ2
r (88)

This shows that the reduced circumference in the equatorial plane of a Kerr hole, the analog of r used
to describe the Schwarzschild geometry, is Ra . Equation (88) gives us the relation between time for a
ZAMO (set dφr = 0) and a distant observer, which we write as a redshift formula for frequency

ν∞ = νo

(
1 − 2M

r
+ 4M2a2

r2R2
a

)1/2

(89)

or, after expanding Ra , and rearranging,

ν∞ = νo

(
r2 + a2 − 2Mr

r2 + a2 + 2Ma2/r

)1/2

(90)

which reduces to (22) in the limit a → 0, the Schwarzschild case. As a consistency check, note that the
surface of infinite redshift, the outer solution of r2 + a2 − 2Mr = 0, is identical to our earlier result,
(74).

The multiplier of νo in (90) is sometimes called the lapse function. Since we use this function later
in the calculation of orbital velocities, it is defined here and given the label α

α =
√
r2 + a2 − 2Mr

Ra
(91)

6.4. Circular orbits in the Kerr potential
Evaluation of the Euler–Lagrange equation for ṫ provides an energy constant of the motion(

1 − 2M

r

)
ṫ + 2Ma

r
φ̇ = E (92)

using the Lagrangian in (72). We have already evaluated the φ̇ component (84), which we reproduce
here

−2Ma

r
ṫ + R2

aφ̇ = L (93)
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Fig. 11. (Left panel) Radius of the innermost stable circular orbit plotted against the spin parameter a∗.
Radii of the ISCOs range from 6M (a∗ = 0) to M (a∗ = 1). For physically realizable Kerr black holes,
the maximum spin is a∗ = 0.998, corresponding to an ISCO radius of 1.24M . (Right panel) Dimensionless
accretion efficiency η plotted against a∗. Efficiency ranges from 0.057 (a∗ = 0) to 0.42 (a∗ = 1). For
a∗ = 0.998, η = 0.34.

spin parameter spin parameter

ηr /M

These two equations can be solved for ṫ and φ̇ in terms of the energy and angular momentum, yielding

ṫ = ErR2
a − 2LMa

r�
(94)

φ̇ = L(r − 2M)+ 2EMa

r�
(95)

Substitiution of (94) and (95) into the Lagrangian (83), noting that� = −m2/2, yields an equation for
ṙ , which we write in terms of dr/dτ , substituting p = τ/m

r3
(

dr

dτ

)2

= S ≡
(
E

m

)2

rR2
a − 4Ma

(
L

m

)(
E

m

)
− (r − 2M)

(
L

m

)2

− r� (96)

Stable circular orbits can be found by imposing three conditions on S: (i) S = 0 (turning point), (ii)
∂S/∂r = 0 (circle), and (iii) ∂2S/∂r2 ≤ 0 (stability). The first two conditions yield a system of two
equations that can be solved for E/m and L/m, restricting those quantities for a given r and a

E

m
= r − 2M + a

√
M/r

(r2 − 3Mr + 2a
√
Mr)1/2

(97)

L

m
=
(
M

r

)1/2
r2 − 2a

√
Mr + a2

(r2 − 3Mr + 2a
√
Mr)1/2

(98)

The third condition requires that

(
E

m

)2

− 1 + 2M

3r
≤ 0 (99)

Substituting from (97), and defining the dimensionless spin parameter a∗ = a/M , the previous restric-
tion becomes( r
M

)2 − 6
r

M
+ 8a∗

( r
M

)1/2 − 3a2∗ ≥ 0 (100)
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Fig. 12. Comparison of the radius of the event horizon (solid circles), the static limit (broken lines) and
ergosphere, and position of the innermost stable circular orbit for black holes of various spin parameters.
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where the equality can be treated as a quartic equation in (r/M)1/2. The quartic has been solved [141]
for the radius of the innermost stable circular orbit for a specified spin parameter

risco = M
[
3 + Z2 −√

(3 − Z1)(3 + Z1 + 2Z2)
]

(101)

where Z1 and Z2 are defined by

Z1 = 1 + (1 − a2∗)1/3[(1 + a∗)1/3 + (1 − a∗)1/3] and Z2 = (Z2
1 + 3a2∗)1/2 (102)

Equation (101) generalizes the result based on (31) for the Schwarzschild metric. As shown in the left
panel of Fig. 11, risco is a monotonically decreasing function of spin, ranging from a maximum of 6M
for a Schwarzschild hole to a minimum of M for a maximally spinning Kerr hole. In Fig. 12, we show
schematically the variation of the position of the ISCO of an accretion disk compared with the size of
the event horizon and the shape of the ergosphere, where, for example, it is seen that for large values of
a∗ the ISCO lies inside the ergosphere, and approaches the event horizon.

If we assume that the accretion efficiency η is determined by the energy of the innermost stable
circular orbit, then the maximum efficiency occurs for the case of maximal spin. With r = M and
a = M , (97) gives E/m = 1/

√
3. Therefore, for a disk extending down to risco for a maximally

spinning black hole, the accretion efficiency is

η(a∗ = 1) = �

(
E

m

)
= 1 −

(
1

3

)1/2

≈ 0.423 (103)
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which can be compared to (35) for the Schwarzschild metric. The energy conversion efficiency η is
plotted as a function of the spin parameter a∗ in the right panel of Fig. 11.

The velocity of matter in a circular orbit around a Kerr black hole, as measured by a ZAMO, can
be expressed in terms of the orbit’s angular frequency as reckoned by a distant observer (�) as

vφ = Ra

α
(�− ωdrag) (104)

where Ra (73) is the reduced circumference of a spinning hole, ωdrag (86) corrects for the dragging of
inertial frames, and the lapse function α (91) accounts for the transformation between measures of time.
An expression for � [149, 150] is most easily found by starting with the equation of motion

d2xλ

dτ 2 + �λµν
dxµ

dτ

dxν

dτ
= 0 (105)

where the Christoffel symbols are given in terms of the metric gµν and the inverse metric gµν by

�λµν = 1

2
gηλ

[
∂gνη

∂xµ
+ ∂gµη

∂xν
− ∂gνµ

∂xη

]
(106)

whose derivation can be found in ref. 132. For a circular orbit, using (94) and (95), the first term on the
left of (105) vanishes for all λ. If we choose λ = r , then

�rµν dxµdxν = �rtt dt2 + 2�rφt dt dφ + �rφφ dφ2 = 0 (107)

or, letting � = dφ/dt

�rφφ �
2 + 2�rφt �+ �rtt = 0 (108)

An evaluation of the Christoffel symbols gives

�rtt = 1

2
grr

(
2M

r2

)

�rφt = 1

2
grr

(−2Ma

r2

)
(109)

�rφφ = 1

2
grr

(
2Ma2

r2 − 2r

)

which, when substituted into (108), leaves us with the simple quadratic equation

(
Ma2

r2 − r

)
�2 − 2Ma

r2 �+ M

r2 = 0 (110)

The solution corresponding to prograde motion is

� =
√
M/r

r + a
√
M/r

= 1

M

1

(r/M)3/2 + a∗
(111)

This expression for� can also be derived by taking the ratio of φ̇ and ṫ from (95) and (94), respectively,
then substituting for E and L from (97) and (98), respectively, but the algebra is tedious.
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Fig. 13. (Left panel) Azimuthal velocities for equatorial circular orbits as a function of radius for five
values of black hole spin, as measured by locally stationary observers. Curves are labeled by the spin as
fractions of M . Vertical lines indicate radii corresponding to the innermost stable circular orbit. (Right
panel) Azimuthal velocities for a selected group of spin parameters (as labeled), illustrating the development
of a local minimum for a∗ > 0.9953.
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Substituting (73), (86), (91), and (111) into (104) yields an expression for the velocity of circular
orbits [141],

vφ =
(
M

r

)1/2
r2 − 2a

√
Mr + a2

(r + a
√
M/r)

√
r2 − 2Mr + a2

(112)

which reduces to the Schwarzschild case, (39), for a = 0. For the other limit, a → M , the numerator
can be factored to give

vφ =
(
M

r

)1/2
r3/2 +M1/2r +Mr1/2 −M3/2

(r +M3/2r−1/2)(r1/2 +M1/2)
(113)

which shows that as r → M , the velocity approaches vφ = 1/2, which is, perhaps surprisingly, identical
to the velocity at the ISCO of a Schwarzschild black hole. The left panel of Fig. 13 shows the radial profile
of vφ(r) for several different spin parameters. The maximum orbital velocity attained is vmax

φ = 0.624
for a∗ = 0.9268, which occurs at the ISCO with risco = 2.14M .

Another feature worth noting is that for the extreme a = M case, the maximum velocity is ap-
proached from above, i.e., vφ(r) is not monotonic. For more realistic cases, where the maximum value
of a∗ is 0.998, the velocity at the ISCO is always approached from below. But this velocity is not always
the maximum velocity. For a∗ = 0.9964 and above, the radius of maximum velocity r(vmax) is distinct
from the ISCO, as can be seen in the right panel of Fig. 13 (lowest two curves), with the largest sepa-
ration r(vmax) − risco occurring for the maximally spinning case, where r(vmax) = 1.72M and where
vmax = 0.573.As first discussed in ref. 151, the nonmonotonic behavior of vφ(r) sets in for a∗ > 0.9953.
For a∗ in this range, vφ(r) has a local minimum that moves inward as the spin parameter increases. It is
proposed [151] that this feature of vφ may be related to the fixed ratio of high-frequency quasi-periodic
oscillations (QPOs) observed in Galactic black hole X-ray binaries, as well as the Galactic Center black
hole Sgr A∗.

Having obtained formulae for the gravitational redshift (90) and the velocities of circular orbits
(112), we now follow the same procedure used for Schwarzschild black holes (Sect. 5.8) to find the
minimum and maximum line energies as observed at infinity as a function of radius for several spin
parameters. The result is shown in Fig. 14, where the extrema are plotted against radius for eleven values
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Fig. 14. Minimum and maximum normalized line energies observed at infinity versus disk radius for several
black hole spin parameters, assuming circular orbits and 90◦ inclination. The upper set of curves shows
the maximum blueshifts for the eleven spin parameters a∗ = [0., 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9,
and 0.998], working downward from the broken line (Schwarzschild case). The lower set of curves shows
the corresponding maximum redshifts, working upward from the a∗ = 0 case. Pairs of curves delineate the
maximum width of the line profile for a given radius, neglecting thermal Doppler widths, and any possible
radiative transfer effects. Curves are truncated at the ISCO corresponding to each spin parameter.
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of the spin parameter. From Fig. 14, one sees that the differences between spinning black holes and a
Schwarzschild black hole are fairly minor for r > 6M , viz., the maximum extent of the blue wing is the
same to within about 10%, for r > 6M , and the maximum redshift is even less distinct when comparing
different spins. If, for example, the disk of a maximally spinning hole did not, for some reason, produce
line emission inside of about 6M , one would be hard-pressed to discern spin by measuring the line
width alone. Figure 14 also shows that the line width is bounded by the Schwarzschild “envelope”
for r > 6M (broken line). The maximum blueshift is a monotonically decreasing function of spin;
the maximum blueshift never exceeds the spin-zero case E/Eo = 1.41 at r = 6M , which may be
surprising. For a given spin, and moving to smaller radii, the modest change in the maximum blueshift
illustrates the trade-off between increasing orbital velocity and increasing gravitational redshift. For
large spin values, the maximum blueshift at small radii is actually redshifted from line center, showing
the dominant effect of gravitational redshift. Thus, the radius of maximum blueshift is not always the
innermost stable circular orbit. This is most obvious for maximally spinning holes, where the energy
of the blue side of the line approaches ≈0.2Eo, since the ISCO approaches the event horizon. The
maximum redshift always occurs at the ISCO, with the minimum value of E/Eo being 0.060 for
a∗ = 0.998. The maximum redshift increases monotonically with spin, since the effects of increasing
velocity and increasing gravitational redshift reinforce each other, rather than offset each other, as they
do when evaluating the maximum blueshift. One also sees from Fig. 14 that the total line width changes
with radius. For example, an emission profile from an annulus near r = 2M in a maximally spinning
hole would appear relatively narrow, with a highly redshifted centroid energy. The narrowing of the
line follows from the overwhelming effect of gravitational redshift as the ISCO approaches the event
horizon.

In any realistic situation, one expects fluorescence from a large range of radii. A model line profile
is built up annulus by annulus, where account is taken of the intrinsic surface brightness variation,
the fraction of emitted photons that escape the system and find their way to the observer (given light
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bending), and the dynamical aspects discussed above. These model profiles can then be compared
with spectroscopic data, which, in principle, allows one to extract several parameters of interest (disk
inclination, radial emissivity profile, disk inner edge, etc.). Considered as a diagnostic of black hole spin,
the distinguishing characteristic of line emission is, from Fig. 14, the extent of the red wing. By contrast,
the blue wing is more sensitive to the inclination than to the spin. Given an observed line profile, the
inclination, to a first approximation, can be determined by the position of the blue edge. The spin can
then be estimated from the redward extent of the line profile. It is not quite that easy, unfortunately, but
computer programs allowing fits to relativistic line profiles exist and are in wide use (see, for example,
refs. 21 and 152), made available, for example, as part of the XSPEC [153] or ISIS [154] data analysis
packages.

The detection of highly redshifted iron Kα emission has led to inferences of nonzero spin, and has
given rise to the idea that X-ray lines can be used to measure black hole spin. A dramatic example of a
redshifted iron Kα line profile has been documented for the Seyfert 1 galaxy MCG–6-30-15 [155,156],
in which the line profile was observed to vary dramatically, from a profile for which the emission
appeared to be dominated by large radii, and then to a profile in which the bulk of the emission was
observed to lie below the rest energy. This latter result implies that the emission originated from r < 6M ,
which, given the assumption that radiation from within the ISCO is unobservable, implies black hole
spin. In fact, a fit to the data requires a∗ > 0.94 [157].

6.5. The plunging region
As orbiting matter in an accretion disk reaches the ISCO, it is typically assumed to lose all rotational

support and free fall from there through the event horizon. In terms of test particle trajectories, the
gradually shrinking circular orbits are replaced by a rapid spiraling infall. We can calculate such a
trajectory by eliminating dτ between (27) and (28), from which we find the following expression for
the trajectory of a test particle in the Schwarzschild metric:

dr

dφ
= ± r2

L/m

[(
E

m

)2

−
(

1 − 2M

r

)(
1 + (L/m)2

r2

)]1/2

(114)

If we setE/m = √
8/9 andL/m = 2

√
3M , the values for a circular orbit at the ISCO, then add a slight

radial displacement inward, an orbit such as that shown in Fig. 15 results.
The sudden increase in radial velocity results in a reduced disk optical depth, which may reduce

the X-ray albedo. The free-falling matter is also conventionally assumed to be stress-free, so that a hot
corona cannot be supported within the ISCO. Therefore, irradiation inside the ISCO by hard X-rays
is reduced relative to matter at larger radii. Finally, the drop in density may imply an increase in ξ ,
which reduces the overall efficiency of fluorescence line production. Taken together, these aspects of
disks imply that any fluorescence must occur outside the ISCO. In other words, the radii over which
observable fluorescence emission originates has a hard inner limit of r = 6M for a Schwarzschild black
hole. Given such a constraint, the assumption of a zero-spin black hole, therefore, limits the maximum
redshift of the line profile (see Fig. 14). Profiles violating this limit have thus been taken to imply spin
(see Sect. 6.4).

The whole concept of a clearly demarcated inner-disk edge has recently been called into question,
based both upon test-particle trajectories [158] and upon three-dimensional MHD simulations of ac-
cretion disks [159]. In the former paper, with a source of hard-X-ray illumination located on the axis
above the disk plane, it was found that substantial fluoresecence line flux from inside the ISCO may
emerge from the system, and that this component of the flux appears at redshifts exceeding the usual
limit imposed by a hard cutoff at r = 6M , thus mimicking emission from a spinning black hole. The
importance of emission from inside the ISCO of a nonspinning hole has been contested [135], however,
based upon the absence of an iron K absorption edge in the well-studied source MCG–6-30-15 that
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Fig. 15. The trajectory of a free-falling test particle inside the innermost stable circular orbit — the
plunging region — of a Schwarzschild black hole (see (114)) according to an observer at infinity. The
energy and angular momentum are set to the corresponding values at r = 6M . To perturb the particle off the
stable orbit at r = 6M , the initial radius was set to 5.99M .
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is predicted by modeling calculations. In ref. 159, stress is found to be continuous across the ISCO,
invalidating the usual assumption that the stress vanishes there. Moreover, it was found that the matter
density distribution need not conform to the simpler model wherein the density decreases monotonically
with decreasing radius, but that clumpiness may permit the survival of matter with lower values of ξ .
Thus, there is some doubt cast upon our ability to make clean measurements of black hole spin using
the iron Kα profile alone.

6.6. The motion of light in the Kerr metric

A general treatment of light motion in the Kerr metric is considerably more complex than the
Schwarzschild case (see, for example, ref. 160). For example, except for the case of motion in the
equatorial plane, trajectories are non-planar (see Fig. 16). Discussions of the techniques used to calculate
photon geodesics near Kerr black holes may be found in [160–163].

We can, however, work out the relatively simple example of a massless particle with L = 0 moving
in the equatorial plane of a spinning black hole. We find an expression for dr/dφ from the following
two equations:

R2
a dφ −

(
2Ma

r

)
dt = 0

(1 − 2M/r) dt2 +
(

4Ma

r

)
dt dφ −

(
r2

�

)
dr2 − R2

a dφ2 = 0

(115)

© 2005 NRC Canada



Liedahl and Torres 1219

Fig. 16. Trajectory for a massless test particle near a maximally spinning black hole, showing the generally
nonplanar character of photon trajectories in the Kerr spacetime. The path is projected onto the x–z plane,
in which the angular momentum vector of the black hole lies. A photon is launched from r = 1.27Rg , with
an initial momentum vector predominantly in the positive y-direction, with a small positive x component
and a small negative z component. The photon executes several “circuits” before impacting the horizon near
the pole. The calculation was performed following the methods described in ref. 160.

spin (a/M = 0.998)

horizon

launching
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The first of this set comes from (84) with L = 0, and the second is simply the metric (72) with dτ = 0.
Equation (115) is a system of two equations in the variables dt , dr , and dφ. By eliminating d, we arrive
at an expression involving only dr and dφ that describes the photon trajectory

dr

dφ
= ± Ra�

2Ma
(116)

for which a straightforward numerical integration produces the plots shown in Fig. 10, where trajectories
for L = 0 photons follow the spacetime drag for two values of the spin parameter.

7. X-ray fluorescence spectroscopy of accreting black holes

Having introduced the basic aspects of GR and accretion disk theory, we look now at the production
of X-ray fluorescence line emission in black hole accretion disks. We start with a brief discussion of
photoionization codes, and introduce the ionization parameter concept. Then we treat the phenomenon
of “reflection,” the spectral response of an optically thick medium to irradiation by a hard-X-ray source.
We close the section by presenting a few aspects of fluorescence at the atomic scale. The treatment of
the latter topic is primarily from the point of view of atomic modeling, rather than from a quantum
mechanical standpoint.

7.1. X-ray photoionization codes

Photoionization codes, such as those described in refs. 166 and 167, are used to determine the effect
of a radiation field on a gas of specified chemical composition, and the self-consistent effect that passage
through the gas has on the radiation field. In other words, the opacity determines the effect of the gas on
the radiation field, but the radiation field partly determines the opacity, primarily through its influence
on the charge state distribution (ionization balance) [168]. In addition to acting as the dominant agent
of ionization, photoionization also heats the plasma, since suprathermal photoelectrons are thermalized
after interacting with the local population of Maxwellian-distributed electrons. Compton scattering and
the Auger effect (see below) also contribute to plasma heating. One may add a source of non-ionizing
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heating to mimic the sum of various other processes [169]. Plasma cooling is primarily through recom-
bination, collisionally excited line emission, bremsstrahlung, and inverse Compton scattering. Also,
imposing the constraint of charge neutrality controls the overall free electron to ion ratio. The explicit
calculation of heating and cooling thus couples the energy equation (radiative heating = radiative cool-
ing) to the ionization equations and the neutrality equation, constituting a complex system of equations,
whose solution requires an iteration scheme.

Three approaches to calculating level populations can be used: (i) the nebular approximation, in
which only the ground state has a significant population, (ii) the Saha–Boltzmann approach, in which the
populations of excited levels k are given by nk = (gk/g1) exp(−Ek/kTe), where g denotes the statistical
weight factor, Ek is the level energy with respect to ground, and kTe is the local electron temperature,
and (iii) detailed level accounting, where level populations are calculated explicitly by diagonalizing
the rate matrix, the elements of which include all rates into and out of each level, thus requiring many
thousands of atomic rate coefficients. Once the level populations are specified, the local contribution to
the overall spectrum is determined. Finally, by more or less approximate methods, radiation transport
of lines and continua from their sites of creation to the observer is accounted for [170–173]. Thorough
discussions of photoionization codes and their applications can be found in refs. 166 and 174–177.

7.1.1. The ionization parameter
The physical conditions in X-ray photoionized plasmas are, for a given ionizing spectrum, often

described in terms the ionization parameter [178]. This quantity arises naturally from the steady-state
equations of ionization equilibrium. Let βi ,Ci , and αi+1 denote the photoionization rate (s−1) of charge
state i, the collisional ionization rate coefficent (cm3 s−1) of i, and the recombination rate coefficient
(cm3 s−1) of charge state i + 1, respectively. The term αi+1 accounts for all two-body recombination
processes. Ignoring three-body recombination, as well as coupling to charge states more than one charge
away, the steady-state equations of ionization equilibrium can be written

[βi + neCi(Te)] ni = neαi+1(Te)ni+1 (117)

where the rate coefficients for recombination and collisional ionization depend explicitly on the electron
temperature Te. In terms of the photoionization cross section σi and ionization threshold energy χi of
charge state i, the photoionization rate for a point source of ionizing continuum can be written as an
integral over photon energy

βi = Lx

r2

∫ ∞

χi

dE
SE(E)

4πE
σi(E) (118)

where SE is the spectral shape function, normalized on a suitable energy interval. Denoting the integral
in (118) by �i , (117) becomes

Lx

ner2 �i ni + Ci(Te) ni = αi+1(Te) ni+1 (119)

Let ξ = Lx/ner
2, which is called the ionization parameter. Then

ni+1

ni
= Ci(Te)+ ξ�i

αi+1(Te)
≈ ξ�i

αi+1(Te)
(120)

where the second approximate equality applies for many cases of interest. Such a plasma, where the
ionization and energetics are dominated by the influence of an X-ray field, is referred to as an X-ray
photoionized plasma. More generally, when the source of X-ray illumination is not a point source,

ξ = 4πF

n
(121)
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Fig. 17. Iron charge state distribution versus ionization parameter. Figure from ref. 179, Astrophys. J. Suppl.
155, 675 (2004). Printed with permission of the publisher.

where F is the energy-integrated, angle-averaged, ionizing flux, and n is the particle number density.
There are other, related forms of the ionization parameter in use (see, for example, ref. 169), but we will
use ξ throughout. In terms of ξ , the photoionization rate corresponding to a single ionic cross section is

βi = nξ

∫ ∞

χi

dE
SE(E)

4πE
σi(E) (122)

For the X-ray sources of interest, typical values of ξ range from approximately 1–104 erg cm s−1.
Since the energy equation and the equations of ionization balance are coupled, the output from the
calculation of the physical state of a gas using a photoionization code gives both the temperature and
the charge state distribution as a function of ξ . A pertinent example is given in Fig. 17, which shows
the distribution in ξ of all 27 charge states of iron [179].

7.2. X-ray fluorescence lines

As discussed above, in accretion-powered X-ray sources, such asAGN and X-ray binaries, reprocess-
ing of a hard-X-ray continuum in relatively cool matter (105–106 K) can generate intense iron K radiation
from more neutral iron species of relatively low charge [84]. Iron fluorescence can be quite prominent,
and, in fact, has long been known to constitute an essential component of disk spectra [180, 181].

The reprocessing mechanism, for any species with more than two bound electrons, begins with
photoionization of a 1s electron by a photon with energy ε above the K edge (see Fig. 18), sending an
element A in charge state i − 1 to charge state i, where i is in a quasi-bound state that is coupled to the
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continuum, denoted by the double asterisk below

ε + Ai−1 → A∗∗
i + e− (K shell photoionization). (123)

The intermediate state A∗∗
i , since it lies above the ionization threshold, has a nonvanishing e− − e−

Coulomb repulsion matrix element with a final product state, part of which consists of a continuum
electron. Therefore, there is a nonvanishing probability assigned to the reaction

A∗∗
i → Ai+1 + e− (autoionization) (124)

The ejection of an electron by this mechanism is called autoionization. The configuration or energy
level associated with A∗∗

i is called an autoionizing configuration or autoionizing level, respectively.
Referred to as the Auger effect for 1s vacancy states, autoionization is often the dominant decay route
for the 1s-hole state. The reaction products are an Auger electron, i.e., an electron with a kinetic energy
that is characteristic of the atomic energy level structure, and an ion in charge state i + 1, where, in this
example, we assume for simplicity that i + 1 is left in its ground state. Still, it is worth mentioning that
autoionization does not always leave a product ion in the ground state. It may be excited, and it can even
be autoionizing. In the latter case, several charge states are coupled by autoionization; a single K-shell
photoionization thus leads to a vacancy cascade, and must be accounted for when calculating the charge
state distribution [182]. An extreme case relevant to astrophysics occurs for K-shell photoionization of
neutral iron (Fe I), which initiates a vacancy cascade that can leave Fe X [183]. However, even in the
simplest case described above (Ai−1 → Ai → Ai+1), three charge states are coupled, and we see that
the simple equations of ionization balance given in (117) need modification for actual calculation of the
charge state distribution. This does not affect the definition of ξ given there, however.

For iron, autoionization rates ∼1012–1014 s−1 are typical. Competing with autoionization of the
stateA∗∗

i is spontaneous radiative decay. Radiative transition rates are of the same order of magnitude as
autoionization rates in iron, but are typically smaller. The case of highest probability involves a radiative
transition that fills the K-shell hole. The line energy εK is characteristic of the atomic structure of the
ion. We write the reaction as

A∗∗
i → A∗

i + εK (spontaneous radiative decay) (125)

The product ion A∗
i is indicated as being an excited level, although there are cases when it is a ground

level. If the radiative transition leaves an ion in a state such that its energy lies below the first ioniza-
tion potential, then that transition has led to radiative stabilization of the ion, i.e., the ion is no longer
subject to autoionization. Parity-changing transitions of the type np–1s are preferred over nl–1s, where
l �= p. Transitions filling the K-shell hole, if n = 2, are referred to as Kα transitions, and if n = 3, Kβ
transitions. To make these concepts more concrete, we provide the following examples.

Example 1: 11-electron ion — autoionization

1s22s22p63s + ε → 1s2s22p63s + e−

1s2s22p63s → 1s22s22p5 + e− (126)

The first reaction generates a photelectron, which heats the ambient plasma. The energy distribution of
photoelectrons is continuous, and depends on the shape of the ionizing spectrum. The second reaction
— autoionization — leaves the F-like ion in the ground level, and ejects an Auger electron.

Example 2: 11-electron ion — radiative stabilization by Kα emission

1s22s22p63s + ε → 1s2s22p63s + e−

1s2s22p63s → 1s22s22p53s +Kα

1s22s22p53s → 1s22s22p6 + εL

(127)
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The second step is a radiative stabilization of the autoionizing level, which produces a Kα photon and
leaves an excited Ne-like ion. The latter then decays by emission of a 3s → 2p soft-X-ray line. The end
products are a Ne-like ground level, an Auger electron, one Kα line, and one Ne-like 3s → 2p line.

Natural line widths are ≈ 0.4 A14 eV, where A denotes the sum of radiative and autoionization
transition rates from the autoionizing level of interest, and is given as a multiple of 1014 s−1. For a line
with energy ε, the thermal Doppler width is ≈0.4 (ε/6.5 keV) (kT /100 eV)1/2 eV. Note that the low
temperature is characteristic of X-ray photoionized plasmas. The commensurability of the natural line
width and the thermal Doppler width for iron K fluorescent lines implies large Voigt parameters (see,
for example, ref. 74). Estimates of line-center optical depths based on a pure Doppler profile will tend
to provide an overestimate, as well as an underestimate of the contribution of the line opacity in the
damping wings. The curve of growth is affected rather dramatically; the large Voigt parameter results
in the virtual elimination of the saturation part of the curve, leaving a transition from the linear part to
the damping part.

7.2.1. Kβ emission

While not as diagnostically useful as Kα emission, the Kβ complex has the potential to provide
corollary information.

Example 3: 13-electron ion — Kβ emission

1s22s22p63s23p + ε → 1s2s22p63s23p + e−

1s2s22p63s23p → 1s22s22p63s2 +Kβ
(128)

Competing with Kβ emission in the second step are autoionization and Kα emission. There is a relatively
small, but non-negligible, probability that a Kβ photon is produced. Detailed calculations show that,
for the near-neutral iron charge states, the Kβ/Kα intensity ratio varies from about 0.12 (Fe II) to 0.15
(Fe IX) [184].

For most cases of interest, photoionization-driven Kβ is important only when the pre-ionization
charge state has an occupied 3p subshell in its ground configuration. To see this, we take as a coun-
terexample, a N-like ion, with ground configuration 1s22s22p3. While, in principle, it is possible to
create, say, C-like 1s2s22p23p through K-shell photoionization from the N-like ground configuration,
this mechanism is of interest only if there is a substantial population of the excited 1s22s22p23p con-
figuration, which is extremely unlikely, since the radiative lifetime of such an excited level is usually
less than a nanosecond. Note also that it is not sufficient to have a populated 3s subshell in the ground
configuration of the pre-ionization charge state. Decay by Kβ 3s → 1s, because of the parity selection
rule, is extremely improbable, since it competes with a much faster 2p → 1s transition, as indicated
in Example 2 above. Therefore, as a rule of thumb, Kβ is emitted only by the iron ions Fe II – Fe XIV
(singly-ionized through Al-like) if photoionization dominates the excitation.

One possible mechanism leading to Kβ emission in charge states more ionized then Fe XIV involves
direct photoexcitation by the same radiation field responsible for creating the charge state distribution10.
Thus, for a continuum photon of energy ε reactions such as 1s22s22p2 +ε→ 1s2s22p23p, a resonance
absorption, followed by re-emission, can be efficient drivers of Kβ. Similarly, again using a C-like ion
as an example, the entire Rydberg series of lines 1s2s22p2np → 1s22s22p2 can be energized by
resonance absorption of the continuum, so that Kγ , Kδ, etc., may appear in a spectrum. Gauging the
overall importance of such a mechanism involves radiation transport, thereby introducing macroscopic
properties of the gas into the calculation, which is case specific. Generally, it is found that the efficacy

10D.A. Liedahl. Manuscript in preparation. 2005.
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with which photoexcitation competes with photoionization in driving line emission decreases with
plasma column density [185]. However, velocity gradients can complicate the analysis [186].

7.2.2. Fluorescence yield
The two-step process described above — inner-shell photoionization followed by radiative stabi-

lization accompanied by emission of a K photon — is called fluorescence, possibly a misnomer, since
the term applies also to other radiation processes. The K fluorescence yield, which we denote by YK , is
the quotient of the rate at which K lines are generated from an irradiated sample and the rate at which
K-shell holes are produced in the sample [187]. To motivate the concept of fluorescence yield, imagine
a somewhat idealized laboratory experiment in which a beam of ions of element A interacts with a
high-energy electron beam, say, in a crossed-beam setup. The electrons ionize the ions, increasing their
charge by one step, and the beams are magnetically separated downstream of the interaction region.
An experimenter counts the ionizations per unit time. Suppose also that an X-ray detector records the
X-ray line production, and the ratio of X-ray count rate to ionization rate is recorded. A second run
with the beam current increased by a factor of two shows that both the ionizations per second and the
X-ray counts per second double. Next, an ion beam of a different element B is tested with the same
setup. It is again found that the X-ray flux doubles when the ionization rate doubles. However, the
ratio of X-rays to ionizations is different for B. One draws the conclusion that the X-ray production is
linearly proportional to the ionization rate, but that the constant of proportionality differs from element
to element, and, possibly, from charge state to charge state for a given element. One infers that the
proportionality constant Y is a characteristic of a given species and, specializing to K line emission,
defines

YK = probability of K line emission per K shell ionization (129)

The usual convention is to associate a fluorescence yield with the pre-ionization charge state. For
example, Fe II K lines are associated with an Fe I yield. This makes good sense, since there are cases
where K lines from a given charge state arise from a photoionization of an ion several charge states
removed. For example, Fe III line production may add to the Fe I fluorescence yield. We also distinguish
emission from H-like and He-like ions from that of the lower charge states. In X-ray photoionized
plasmas, emission from H- and He-like ions results predominantly from radiative recombination into
excited levels. One could assign a fluorescence yield to a H-like ion by taking the ratio of H-like K
lines produced per photoionization of the H-like ion, but that is actually somewhat at odds with the
convention used for the lower charge states. In this paper, we assume that the fluorescence yield is
defined for neutral atoms through Li-like ions.

In what follows, we show that the implication of (129) — that Y is an intrinsic atomic property — is
false. For a set of energy levels u that lie above the ionization threshold, and a set of stabilized levels �,
all of which belong to charge state i (see Fig. 18), one starting point for deriving an explicit expression
for the fluorescence yield is the emissivity, summed over all K lines of charge state i

jK =
∑
u

∑
�

ni,uA
r
u� (130)

where we assume that transitions u → � are members of the Kα complex in i. Level population densities
of level u in charge state i are denoted ni,u. Radiative transition rates are denoted by Ar . The summed
K line emissivity has c.g.s. units cm−3 s−1.

The level population density ni,u is found by dividing the population flux into level u by the total
decay rate of the level,

ni,u =
∑
k ni−1,kβku∑

j A
r
uj +∑

m A
a
um

(131)
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Fig. 18. Schematic of atomic processes involved in production of photoionization-driven K spectra. Three
charge states, i − 1, i, and i + 1 are represented. Level 1 is the ground state of i, level 2 is an excited
level, levels 3 and 4 are autoionizing, lying above the first ionization limit of i (broken line). The low-lying
level b in i − 1 is populated by photoexcitation from the ground level a, and decays radiatively back to a
(wavy lines). (In the more general case, collisional excitation and de-excitation also affect the population
distribution.) K-shell photoionization from levels a and b populates levels 3 and 4, respectively, which
can decay radiatively by Kα emission to levels 1 and 2, respectively. Alternatively, levels 3 and 4 can
autoionize, leaving as products an Auger electron and ion i + 1. The relative intensities of 3 → 1 and 4 → 2
thus depend on the level population distribution in 1 − i. The escape probabilities of these two lines depend
on the level population distribution in i.
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where Aaum is an autoionization rate connecting level u in i to level m in i + 1. Energy levels k in the
pre-ionization charge state i − 1 are represented as ni−1,k . Photoionization connecting level k in i − 1
to autoionizing levels u in i are denoted by βku, and are calculated according to (118).

Substituting (131) into (130) gives

jK =
∑
k

∑
u

∑
�

ni−1,kβku�u� (132)

where we define the line fluorescence yield �u� for each transition u → � by

�u� = Aru�∑
j A

r
uj +∑

m A
a
um

(133)

The line fluorescence yield depends on purely atomic quantities, and can be thought of as a radiative
branching ratio where additional sinks are included, viz., autoionization.

Now we “normalize” the emissivity by dividing it by the total photoionization rate, which gives an
expression for the fluorescence yield

YK =
∑
k

∑
u

∑
� ni−1,kβku�u�∑

k

∑
u ni−1,kβku

(134)

The yield YKα is thus a weighted average of the line fluorescence yields, where the weightings are
determined by the level population distribution of charge state i−1 and the level-to-level photoionization
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rates, and should, in principle, be evaluated on a case-by-case basis, taking into account processes
that affect the local excitation conditions. While complicated enough, note that YK does not depend
on the level population distributions of charge states i and i + 1, nor does it depend on the charge
state distribution. We have added one further simplification, which is to ignore possible collisional
redistribution of levels u, which is likely to be a valid assumption for most astrophysical densities.

The above derivation shows that a fluorescence yield cannot be considered as an intrinsic attribute
of an atomic species, a fact that has been known for some time [188]. Equation (134) shows that YK
depends on the level population distribution of i − 1, which depends in turn on the electron density,
the electron temperature, and the local radiation field. Nevertheless, tables of yields exist, and are are
widely used in astrophysics [183, 189]. Part of the reason for this is that atomic calculations covering
the wide range of conditions expected in astrophysical plasmas are scarce. Although this situation will
change, in the meantime data based upon laboratory experiments, where fluorescence lines are used
for the purposes of calibration, and “theoretical” data based upon approximation schemes, such as Z-
scaling, continue to be used. Notwithstanding one’s possible expectations that yields vary dramatically,
depending on the plasma conditions, detailed calculations of iron fluorescence [179, 190] show that
numerical values of YK do not show substantial sensitivity to electron density between the low-density
limit and the Maxwell–Boltzmann limit for the ions Fe II – Fe XVII. It is found that YK hovers around
the “canonical” value of 0.34 for these ions. A variation is observed for higher charge states, however.

Since electric dipole radiative rates scale as Z4 for �n > 0 transitions, and since Auger rates are
roughly constant with Z, YK increases rapidly with Z [191]. The trend of YK with Z, based upon
both experimental data and calculations is shown in ref. 192. Among the elements currently relevant to
cosmic X-ray spectroscopy, only nickel has a higher atomic number than iron, and the nickel abundance
is at least an order of magnitude smaller than that of iron [193]. The relatively large iron fluorescence
yields, coupled with its high abundance, conspire to make iron K fluorescence lines the most commonly
observed in astrophysics. Calculations of disk reflection models have shown that fluorescence lines
from the remaining cosmically abundant elements are relatively weak [194], and this is validated by the
lack of detection in black hole accretion disk systems, although some (e.g., silicon Kα) are observed in
other source classes (see, for example, ref. 195).

7.2.3. Energy distribution of iron K lines

To date, spectrometers used to observe extrasolar X-ray sources have, at best, resolved the iron Kα
complex into three features: the Fe XXVI Lyα doublet at 6.97 keV, the Fe XXV blend, near 6.7 keV,
and a blend of emission from a composite of lines from Fe II – Fe XVIII near 6.4 keV. For convenience,
we refer to the 6.4 keV blend as arising in “near-neutral” material. The energy distribution of the iron
K lines is shown in Fig. 19, from ref. 179, where the potential for blending of the near-neutral lines is
evident. Comparing adjacent charge states, the small energy spacings of lines from near-neutral iron
arises from the fact that changes in the screening of the atomic potential experienced by 2p electrons
are small compared to the Kα line energies, i.e., the potential in the n = 2 shell is dominated by
the nuclear charge to such an extent that screening by n = 3 electrons is of small consequence. The
blending persists into the L shell. For example, in assessing the 5 eV energy separation of the Kα line
centroids11 of Ne-like Fe XVII and F-like Fe XVIII, note that the upper configurations are 1s2s22p63s
and 1s2s22p6, respectively. The small difference in centroid energies results from the small screening
of the nuclear potential by the 3s electron in the Fe XVII 1s-hole state. Starting with O-like Fe XIX, the
ion-to-ion Kα centroid separations begin to increase. The removal of a 2p electron has a relatively large
effect on the differential screening. For example, the Kα energy centroids for Fe XVIII and Fe XIX are
separated by 34 eV.

11The centroid is defined as �iεiji/�iji , where ε is a line energy, and j is an emissivity.
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Fig. 19. Energy centroids for iron Kα (lower) and Kβ (upper.) Ordinate denotes the number of bound
electrons in the emitting ion: ‘2’ for Fe II, etc. Figure from ref. 179, Astrophys. J. Suppl. 155, 675 (2004).
Printed with permission of the publisher.
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The most commonly observed fluorescence lines are those from near-neutral ions. Because of the
blending and the small variation of line centroid energies, the entire complex is often referred to as
“the iron line,” with the understanding the “line” is likely to be a composite structure. Reference to
table values of line energies often contain separate entries for Kα1 and Kα2, which partially accounts
for the intrinsic spectral structure. The distinction between these two features results from the relative
probabilities of a 1s vacancy being filled by a radiative transition from an electron in the 2p3/2 subshell
(Kα1) or the 2p1/2 subshell (Kα2). Thus, E(Kα1) > E(Kα2). Since there are four 2p3/2 electrons
in a filled L shell, and two 2p1/2 electrons, the Kα1 yield is generally given as twice the Kα2 yield.
However, even this greatly oversimplifies the K spectra from iron ions. In fact, the Kα1–Kα2 labels
are primarily an observational convenience (when they are spectrally resolved). When one accounts
for the myriad possibilities introduced by angular momentum coupling, and the variety of possible
excitation conditions encountered in astrophysical plasmas, the true spectrum may consist of hundreds
of individual lines. In some cases the Kα1 and Kα2 line complexes overlap in energy.

7.2.4. Resonant Auger destruction

The blending of Kα lines from near-neutral iron ions could be considered as both a blessing and a
curse. On the one hand, the blending allows a simple approach to spectral fitting: simply add a line at or
near 6.4 keV to the trial spectral model; no need to worry about a complex distribution of lines; no need
to worry about the charge state distribution. On the other hand, blending means that while conditions
in the disk plasma may vary considerably through the emitting region, for a large range of physical
parameter space, these variations are not conveyed by the spectrum. In this latter context, then, one
might look to the L-shell ions for potential diagnostics. The Kα spectra of L-shell ions provide unique
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diagnostic information on plasmas that exist over intermediate ranges of ionization, as can be seen in
Fig. 17. Interestingly, it appears that Kα lines from iron L-shell ions are not required in spectral fits to
black hole accretion disk spectra, even though there is ample evidence for emission from the charge
states that bracket them. The absence of L-shell emission has been attributed to a process known as
resonant Auger destruction [196, 197], a radiation transfer effect that leads to severe attenuation of K
emission lines from L-shell ions.

To see how resonant Auger destruction (RAD) selectively attenuates K emission from L-shell ions,
as opposed to M-shell ions, consider the following example.

Example 4: 10-electron ion — resonant Auger destruction of Kα

1s22s22p6 + ε → 1s2s22p6 + e− (photoionization)

1s2s22p6 → 1s22s22p5 +Kα (Kα emission)

Kα + 1s22s22p5 → 1s2s22p6 (resonant absorption)

1s2s22p6 → 1s22s22p4 + e− (Auger decay/photon destruction)

(135)

The third step is the inverse of the second, where it is understood that the Kα photon, somewhere along
its line of flight, encounters an ion in the same state as the product ion that resulted from the original Kα
transition. The fourth step, autoionization, is, on average, more probable than radiative decay. Therefore,
there is a high probability per scattering event that the photon will be destroyed. If the autoionizing ion
in the fourth step decays radiatively instead, then, depending on the line optical depth of the medium,
another absorption can occur, with an equally large destruction probability. The probability of the Kα
photon surviving more than just a few scatters is very small, and very few photons can escape the
medium.

To make a distinction between L-shell ions and M-shell ions and their response to the RAD process,
consider one more example.

Example 5: 11-electron ion — an improbable resonant Auger destruction of Kα

1s22s22p63s + ε → 1s2s22p63s + e− (photoionization)

1s2s22p63s → 1s22s22p53s +Kα (Kα emission)

Kα + 1s22s22p53s → 1s2s22p63s (resonant absorption)

1s2s22p63s → 1s22s22p5 + e− (Auger decay/photon destruction)

(136)

While this set of reactions is possible, it is generally unimportant, since the third step is extremely
unlikely. For this step to operate effectively, the medium would require a high optical depth in the
relevant excited level of the 1s22s22p53s configuration. For the densities of interest, this will never be
the case. By far, the dominant configuration of a 10-electron ion is 1s22s22p6, and excitation channels
to the 2p subshell are closed. This is also the case for the RAD sequence that begins with any ion that
has n = 3 electrons in its ground configuration. Therefore, RAD has a negligible effect on M-shell ions,
but a potentially major effect on L-shell ions.

Consider a semi-infinite slab that is irradiated from above by a hard-X-ray continuum source. Only
an upper layer of the slab corresponding roughly to unity line optical depth will contribute to Kα
fluorescence from L-shell ions. Below that depth, escape is prohibited by resonant Auger destruction.
Compare this to the case of fluorescence from M-shell ions, where the fluorescing region for near-neutrals
extends for roughly one continuum optical depth. This would suggest that the emergent Kα line flux
from L-shell ions is dwarfed by that from the near-neutrals. This provides a plausible explanation for
the absence of an L-shell component in iron Kα spectra. Moreover, in the context of spectral modeling
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of accretion disks, it appears to provide justification for simply zeroing out the Kα emission for L-shell
ions.

This argument needs some modification, however. When we couch the argument only in terms of
absorption cross sections and ion column densities, we ignore the fact that the line optical depth depends
on the level population of the lower level of the relevant transition, which need not be the ground state.
For a given transition between an upper level u and a lower level �, the line optical depth, in terms of the
hydrogen column density NH, the elemental abundance AZ , and the ionic fraction Fion, can be written

τ�u = NHAZFionp�
πe2

mc
f�uφ(ν) (137)

where p� is the fractional population density of level �, f�u is the absorption oscillator strength, and
φ(ν) is the line profile function in the rest frame of the absorber. Therefore, we must solve for the level
populations p� for the lower levels of each Kα transition. In fact, many Kα transitions terminate in
excited states, and such lines may be optically thin under certain conditions relevant to accretion disk
atmospheres [198].

Given that the level population distribution in a charge state i partly determines the optical depth of
Kα lines from i, self-consistency demands that the setp� in charge state i−1 also be calculated. The level
populations of i − 1 determine the relative rates at which the upper levels of the Kα transitions in i are
populated by K-shell photoionization [179]. Referring back to the discussion in Sect. 7.2.2 concerning
the effects of local excitation conditions onYK , this constitutes a second reason why assessments of RAD
cannot be decoupled from microscopic considerations. It is shown in ref. 198 that the level population
distribution in i − 1, responding to an underlying UV/soft-X-ray continuum, can significantly increase
YK for N-like, C-like, B-like, and Be-like iron ions. If the definiton of YK is modified so as to account
for the escape probability of Kα lines from a medium of specified column density in charge state i, then
a plot of Y eff

K versusNi allows us to evaluate the overall effect of RAD, accounting for both microscopic
and macroscopic influences. This is illustrated in Fig. 20, which shows that RAD is not decisively
effective in quenching Kα emission from L-shell ions until ionic column densities ∼1019 cm−2 are
reached. Calculations of vertical structure in irradiated accretion disks suggest that, for these ions, this
value is most likely on the high side of what is expected in typical disk atmospheres [199].

7.3. X-ray reflection

The simplest assumption concerning vertical structure is to invoke a constant density, i.e., to forego
a detailed consideration of the effect of the gravitational field entirely. Calculations of this type, while
seemingly neglecting important physics, have nevertheless proven to be quite powerful in elucidating
the physics of spectral formation in accretion disks [200–202]. With a choice for the incident flux,
the local density dictates the ionization parameter. Transport of the incident radiation down through the
atmosphere leads to its attenuation, which results in a stratification of ξ (∂ξ/∂z is positive). Photoioniza-
tion codes are then used to generate local spectra, which, accounting for opacity in the overlying layers,
are propagated through the atmosphere to the computational boundary, the result being the spectral
distribution of the radiation field at the “surface.” If desired, the effects of disk rotation, disk inclination,
and relativistic effects are applied, thus generating a model spectrum as observed at infinity.

The first applications of constant-density models were focused on an examination of the “reflection”
of the incident continuum from cold matter, “cold” in this context meaning that H and He were assumed
to be fully stripped, while the remaining elements retained all of their electrons. A fraction of the
radiation impinging on any gas will be re-radiated, or reflected, back into the general direction of the
radiation source. This fraction is known as the albedo. More generally, one is interested in the energy
dependence of the albedo. High-energy photons interacting with the cold material described above will
either be absorbed via photoionization or Compton scattered.
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Fig. 20. Effective fluorescence yields as modified by resonant Auger destruction plotted against ionic
column density for Fe XX – Fe XXIII. Each plot shows two cases: (dotted line) level populations of
low-lying states driven by an 80 eV half-diluted blackbody and (broken line) no perturbing radiation field.
The fluorescence yield of N-like Fe XX is determined by the production and escape probability of C-like
Fe XXI lines, etc.

B-like Fe XXII

C-like Fe XXI N-like Fe XX

Be-like Fe XXIII

A photoelectric cross section falls roughly as E−3 above the photoionization threshold, or edge.
Neutral iron has as its ground configuration [Ar]3d6 4s2, where the notation [Ar] symbolizes the con-
figuration set of ground-state Ar. With electrons occupying four shells, Fe I has associated with it an N
(n = 4) edge, an M edge (n = 3), an L edge (n = 2), and a K edge (n = 1). The rapid falloff in the cross
sections results in the K edge dominating the total cross section for energies above the 7.1 keV K edge.
Competing with iron opacity is Compton scattering, with a small contribution from photoabsorption
by the remaining elements. Although the iron K edge cross section at threshold is orders of magnitude
larger than the Compton cross section, the fact that iron is a trace element (the solar abundance relative
to hydrogen is 4.7 × 10−5 [193]) leads to a near equality in the opacities, so that Compton scattering is
approximately as important as the iron photoelectric opacity at the iron K edge. A few keV above the
iron K edge, Compton scattering becomes the dominant opacity source.

Since the typical energy lost by a photon in Compton scattering off cold electrons is�E ≈ E2/mc2,
not only do high-energy photons lose more energy than low-energy photons, but they lose a larger
fractional energy �E/E, as well. Compton scattering from a cold slab thus leads to a degradation in
energy of the incident spectrum, high-energy electrons migrating to lower energies, with a trend toward
a steepening relative to the incident spectral shape. At the same time, however, a fraction of the photons
near and below ∼10 keV are absorbed, depleting the incident flux of soft X-rays. The combined effect
of these two processes produces the Compton bump, an apparent excess above an incident power-law
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Fig. 21. Reflection spectra for constant-density slabs for three values of ξ (as labeled), assuming normal
illumination by a power-law spectrum with photon index 2. Electron density is set to 1015 cm−3. The iron
abundance is set to the solar value. From ref. 173 Mon. Not. R. Astron. Soc. 358, 211 (2005). Printed with
permission of the publisher, Blackwell Publishing.

spectrum in the approximate range 20–50 keV [18, 19] (see Fig. 21). Accompanying this signature of
reflection are fluorescence lines [84, 203] (see below). The overall spectrum is a sum of the incident
power-law and the reflection spectrum. The relative contribution of the reflection spectrum depends on
the solid angle �� that the reflector subtends at the hard-X-ray source [204, 205]. For example, a disk
geometry with illumination from above gives a covering fraction ��/4π of about 1/2.

Some of the first serious attempts to model the vertical structure of hydrostatic accretion discs,
including energy transport, opacity, and the equation of state, were applied to disks in cataclysmic
variables [206–208]. These calculations made no provision for the influence of a hard-X-ray source,
however, and were not directly applicable to accreting neutron stars and black holes. Later developments
saw the introduction of hydrostatic disk models for which the outer disk was assumed to be X-ray
photoionized by a central source of illumination, appropriate to accreting neutron star X-ray binaries
[209–212].

A typical approach involves dividing the disk into a set of annuli, say, a few tens, then using a disk
photoionization code to calculate the atmospheric structure of each annulus by integrating the equations
of hydrostatic balance and 1-D radiation transfer for a slab geometry. A common alternative is to treat
a single annulus. We assume, for each radius, a hard-X-ray radiation field that is incident from above
at some specified angle. The spectral shape is usually taken directly from observations, rather than
calculated self-consistently. A typical choice for the relative normalizations of the X-ray field at each
annulus is to scale it by a r−3 power law. This is motivated by the picture described earlier wherein the
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hard X-rays are supposed to originate from Compton scattering of the UV/soft-X-ray disk field, which
scales as the local dissipation rate in the optically thick disk (see (8)). The overall normalization of the
X-ray flux to the UV flux is an input parameter, and is typically of order unity. In particular, if a single
annulus is modeled, this ratio is left to the discretion of the modeler, with the assumption that the disk is
irradiated by a localized disk flare [199,213]. The atmosphere is divided into a set of zones of (possibly)
variable geometrical thickness. The absorption of the incident radiation field leads to heating through
photoelectron thermalization and Compton heating. Photoelectron mean free paths are sufficiently small
that the energy is deposited “on the spot.” A further constraint is that local thermal equilibrium must be
satisfied, i.e., �(P, ρ, Fν) = 0, where the energy function depends on the gas pressure P , the density
ρ, and the local radiation field Fν . The difference between heating and cooling � includes Compton
scattering, bremsstrahlung cooling, photoionization heating,Auger heating, collisional line cooling, and
recombination cooling from H, He, C, N, O, Ne, Mg, Si, S, Ar, Ca, Fe, and Ni ions. Photoionization
produces spectral by-products, as well, such as fluorescence lines, radiative recombination continua, and
lines produced in recombination cascades. This reprocessed radiation contributes to the “diffuse” flux,
which is added to the modified incident field, and is propagated upwards and downwards to the adjacent
computational cells. Boundary conditions at the top and bottom of the annulus are also prescribed. One
choice [80] is to set the density at the bottom to the value given by the α-disk model, and to set the
gas temperature at the top to the Compton temperature [74], given by the following integral over the
radiation spectrum

kTc = (4U)−1
∫ ∞

0
dε εUε (138)

whereUε is the specific radiation energy density andU is the total radiation energy density. The Compton
temperature for most cases of interest is ∼107–108 K.

For modeling X-ray line emission from the disk atmosphere, the commonly used assumptions of
LTE and the diffusion approximation may not be valid. The assumption of constant density may be
invalid, as well, since the hydrostatic equilibration time scale is small or comparable to other relevant
time scales (cf., ref. 70). For calculating the discrete emission line content of a disk spectral model,
particularly recombination emission, the vertical ionization structure and the density stratification are
crucial. By contrast, the output iron fluorescence energy centroid varies little until the ionization reaches
the L shell (see Fig. 18). Still, even fluorescence emission can be affected by a Compton thick, fully
ionized gas overlying the emission sites deeper in the atmosphere [215]. Also, over certain ranges of ξ ,
the gas is subject to a thermal instability that can lead to a steep transition between cold near-neutral
gas and hot highly ionized gas [215, 216].

Examples of output from a set of reflection slab models are shown in Fig. 21 [173]. In these examples,
the gas density is fixed at a constant value, and the slab is irradiated from above by a continuum flux
with spectral shape AE−1 exp(−E/300 keV). The value of ξ is varied by varying the normalization A.
As described in ref. 173, the reflection spectrum for the largest value of ξ (104) is nearly line-free, since
the gas is very highly ionized. Compton-broadened emission from Fe XXXV and Fe XXVI make the
only conspicuous discrete contribution to the spectrum. At the two lower values of ξ the increasingly
complex line spectra, with contributions from n = 2 → n = 1 transitions of H-like and He-like ions of
C, N, O, Ne, Mg, Si, S, and a few n = 3 → n = 2 Fe L-shell lines, are attributed to the progressively
lower level of ionization.

7.3.1. Thermal instability
X-ray-irradiated gas is subject to a thermal instability in the 105–106 K temperature range [217,218],

suppressing X-ray line emission in that regime.Application of the Field stability criterion [219] indicates
that a photoionized gas may become unstable when recombination cooling of H-like and He-like ions
is important. The T and ξ ranges where the instability occurs depend on the metal abundances and the
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local radiation spectrum [220], and, from the theoretical point of view, depends on the atomic rates
used [221]. Within a range of pressure ionization parameters [169] � = Prad/Pgas, where Prad is the
radiation pressure, thermal equilibrium is achieved by three distinct temperatures, only two of which
are stable to perturbations in temperature. Physically, the instability causes a steep temperature gradient
as the gas is forced to “move” between thermally stable regimes, requiring the formation of a transition
region joining the hot and cold phases whose size could be determined by thermal conduction. The
method by which the thermal instability is treated can significantly affect the predicted spectrum [80].
One issue relevant to iron K fluorescence emission is that the steep transition region may comprise the
iron L-shell ions. Therefore, even if the effects of RAD were nil, iron L-shell ions may have insufficient
optical depth to contribute substantially to the overall iron K spectrum.

7.3.2. Alternative X-ray signatures of relativistic effects

Prior to the launch of Chandra and XMM-Newton, the soft-X-ray spectrum (∼1 keV) was generally
modeled as a power-law attenuated by an ionized absorber [223] – the warm absorber model. A radical
departure from this model was suggested in ref. 224, where it was proposed that spectral features
observed in the 5–35 Å band of the Seyfert 1 galaxies MCG-6-30-15 and Mrk 766 could be explained as
relativistically broadened emission lines from H-like carbon, nitrogen, and oxygen. Fitting parameters
— disk inclination, disk emissivity profile — were found to be roughly consistent with those found for
the iron Kα line [27]. An analysis of a 130 ks grating observation with XMM-Newton of Mrk 766 [225]
led to the conclusion that a relativistic line interpretation provides a better fit to the data than the warm
absorber model. A similar conclusion was found for the Seyfert 1 galaxy NGC 4051 [226]. If correct,
these spectral features, formed by radiative recombinaton onto bare nuclei, could provide additional
“handles” that would allow tighter constraints to be placed on models of the accretion disk structure in
the relativistic regime. Since the sites of formation H-like lines are spatially distinct from the formation
sites of fluorescence lines a broader range of parameter space would be accessible.

Still, numerous absorption lines from ionized species in the Chandra grating spectrum of MCG–
6-30-15, also noted in ref. 224, indicated at least some influence from a warm absorber. In fact, the
relativistic disk interpretation in its entirety was disputed in ref. 227. In the model proposed there,
absorption in addition to two warm absorber components is provided by a dust component containing
FeO2, which is embedded in the warm absorber. The warm absorber model found additional support
from theoretical disk models, which showed that the line equivalent widths required by the relativistic
disk interpretation far exceeded theoretical predictions [214].An additional problem is the high nitrogen-
to-oxygen ratio required to account for the N VII feature, although a Bowen-like mechanism has been
suggested as an explanation [228]. A further criticism of the relativistic disk line model is that reflection
models predict emission from iron L-shell ions [214] that is not observed in the data. Radiation transport
calculations using a Monte-Carlo approach indicate no strong iron L n → 2 emission, however [172].

In subsequent work [229], it was argued that the warm absorber model used in the Chandra in-
terpretation of MCG–6-30-15 does not adequately describe the XMM Reflection Grating Spectrometer
data, which has a better response at longer wavelengths. Further analysis [230] of the XMM data of
MCG–6-30-15 showed that fits obtained with a composite model, involving both relativistic disk lines
and a warm absorber, yield ambiguous results; if a warm absorber is added to the best-fitting disk
line model, then relatively little absorption is required; if relativistic lines are added to the best-fitting
warm absorber model, then only weak emission lines are required. Given the potential importance of
relativistic recombination line emission, there is hope that these issues will be resolved decisively in
the near future.

Another class of relativistic signatures has been proposed recently. The magnetic flare model [232]
of the hot corona and hard-X-ray continuum observed in accretion disks posits the existence of many
small-scale, hot (T > 108 K) magnetic loops. Following loop emergence, Compton cooling of loop
material, through the interaction with softer disk photons, results in hard-X-ray flaring events. Disk
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irradiation by these relatively localized flares produce fluorescence emission that is concentrated in the
region of the disk near the flare [231]. In other words, regions of the disk that are small in both radial
and azimuthal extent, and which radiate intense transient fluorescence emission are predicted by this
model. The transiently fluorescing region will continue to orbit the black hole, and will emit iron lines
that are narrow compared to the case of full-disk irradiation. The centroid energy is determined by the
gravitational redshift associated with a small range of annuli, and by the Doppler effect appropriate to
the instantaneous projected velocities over a narrow range of azimuth. If the lifetime of such a region is
sufficiently long, the centroid energy could be observed to change over the time scale of an observation.
It has been shown how the line flux received from such a “hot spot” changes with position along the
orbit, owing to the effects of relativistic beaming and light bending [233]. Narrow spectral features
lying at energies below 6.4 keV have indeed been reported (see, for example, refs. 156, 234 and 235).
As pointed out in ref. 236, however, inferring disk parameters from these kinds of data push the limits
of current observational capabilities.

8. Concluding remarks

The theory of accretion onto black holes has been in development for at least 30 years. Owing to the
complex physics governing accretion, it is probably safe to predict that decades of additional research
will be required before the theory is considered complete. Answers to outstanding questions concerning
accretion onto black holes will not come without access to better data, and lie beyond the capabilities
of current instrumentation. The current generation of X-ray observatories, Chandra and XMM-Newton
are helping to identify the various avenues of inquiry [237] that will motivate future observations with,
for example, NASA’s planned Constellation-X mission and ESA’s planned XEUS mission.

In the meantime, on the theoretical side, referring back to Shapiro and Teukolsky’s quote in Sect. 1, an
attack on the full inhomogeneous, nonaxisymmetric, time-dependent, relativistic accretion disk problem
with coupled radiative transfer is not far beyond the horizon. In any case, it seems evident that disk
reflection models, with their emphasis on radiation flow, and MHD simulations, with their emphasis on
time-dependent gas flow, will need to be merged at some point in the not-too-distant future.

Einstein developed the General Theory of Relativity at a time when it was not demanded by astro-
nomical observations. Only Einstein’s physical intuition demanded it. From Schwarzschild’s solution,
to the theory of stellar collapse, to the quasar model, to the discovery of Cyg X-1, to the supermas-
sive black hole at the Galactic center, to the identification of relativistically modified X-ray emission
lines, we now find that General Relativity is fully acknowledged to be an indispensable component of
the various theoretical formalisms used to describe black hole astrophysics. One wonders if Einstein’s
skepticism regarding the existence of black holes would have remained intact in light of the current
weight of evidence.

In addition to the special and general relativity theories, Einstein’s Nobel prize winning work on the
photoelectric effect, his introduction of the A and B coefficients, his advances in statistical mechanics,
his influence on de Broglie, Schrödinger, and Dirac, and many other of his contributions to theoretical
physics, figure prominently in modern research on the topics discussed in this paper.
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